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Abstract

■ Remembering when events occur in time is fundamental
to episodic memory. Yet, many experiences repeat over
time creating the potential for interference when attempt-
ing to recall temporally specific memories. Here, we argue
that temporal memories are protected, in part, by reinstate-
ment of temporal context information that is trigered by
stimulus repetitions. We motivate this argument by integrat-
ing seminal findings across several distinct literatures and
methodologies. Specifically, we consider key insights from
foundational behavioral studies of temporal memory, recent

electrophysiological and neuroimaging approaches to
measuring memory reinstatement, and computational models
that describe how temporal context representations shape
memory processes. We also note several open questions con-
cerning how temporal context reinstatement might influence
subsequent temporal memory, including potential mediating
effects of event spacing and event boundaries. These ideas
and questions have the potential to guide future research
and, ultimately, to advance theoretical accounts of how we
preserve temporal memories. ■

INTRODUCTION

The ability to remember when events occurred in
time—temporal memory—is a definitional component
of episodic memory (Tulving, 2002). We rely on temporal
memory not only to organize our reflections on past
experiences but also to guide future behavior. For exam-
ple, temporal memory is critical for evaluating whether
stored food is viable for consumption (nuts cached by a
bird or leftover pizza cached by a human), remembering
when you last took a medication, or deciding whether it
is appropriate to email a colleague with another reminder
about an overdue task. Each of these examples high-
lights a common form of temporal memory—a recency
judgment—in which the goal is to estimate the amount
of time that has elapsed since an event occurred. Each
of these examples also highlights a common challenge to
recency judgments: that experiences often repeat across
time. For example, your ability to remember the last time
you ate pizza may be complicated by memories for the
countless other times you have had pizza. As such, trying
to recall the specific temporal context in which an expe-
rience occurred can be viewed as a memory interference
problem (Figure 1A). That is, recalling a specific temporal
context represents a more general situation in which a
single stimulus has been associated with multiple con-
texts (Yonelinas, Ranganath, Ekstrom, & Wiltgen, 2019).
On the one hand, resolving temporal memory interfer-

ence could be construed as a retrieval problem—that
individual memories are independently encoded across

time and that this interference manifests, and must be
sorted out, when specific temporal information needs
to be recalled (Mensink & Raaijmakers, 1988). By this
account, interference could be resolved via processes
that direct attention toward relevant retrieval cues or by
comparing automatically retrieved content with goals
(Badre & Wagner, 2007). Here, however, we focus on a
different possibility: that temporal memory interference
can be preempted or reduced via mechanisms that are
engaged as memories are encoded. This perspective is
motivated by behavioral and neuroimaging studies
demonstrating that encoding-related processes can
powerfully influence subsequent interference (Antony
et al., 2022; Chanales, Dudukovic, Richter, & Kuhl,
2019; Koen&Rugg, 2016; Kuhl, Shah, DuBrow, &Wagner,
2010) and by behavioral studies that have linked
encoding-related factors to judgments of temporal
recency (Hintzman, 2010).

Here, the specific encoding-related phenomenon that
we focus on is the tendency for a stimulus presentation
to reinstate prior experiences with that same stimulus—a
phenomenon we refer to as repetition-induced reinstate-
ment (Figure 1B). We use this term in a broad sense, inclu-
sive of cognitive concepts such as study-phase retrieval
and recursive reminders (Hintzman, 2010) as well as neu-
roimaging and electrophysiological measures of neural
reinstatement (Danker & Anderson, 2010). Indeed, we
specifically advocate for the idea that there is a need for
better integration of behavioral and neural evidence link-
ing stimulus repetitions, reinstatement, and temporal
memory.University of Oregon

© 2024 Massachusetts Institute of Technology Journal of Cognitive Neuroscience 36:11, pp. 1–11
https://doi.org/10.1162/jocn_a_02212

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/doi/10.1162/jocn_a_02212/2470484/jocn_a_02212.pdf by U
niversity of O

regon user on 24 Septem
ber 2024

https://orcid.org/0000-0001-8058-2917
http://crossmark.crossref.org/dialog/?doi=10.1162/jocn_a_02212&domain=pdf&date_stamp=2024-9-14


In the following sections, we first consider behavioral
evidencemotivating the idea that stimulus repetitions trig-
ger reinstatement, we next consider neural/neuroimaging
evidence that stimulus repetitions reinstate the prior tem-
poral context in which a stimulus was encoded, and then
we consider specific ways in which reinstatement may
influence subsequent temporal memory. We conclude
by considering two factors that potentially mediate the
relationship between reinstatement and temporal mem-
ory: (1) the spacing, or lag, between stimulus repetitions
and (2) whether stimulus repetitions are distributed
across event boundaries. Across these sections, we con-
sider relationships between behavioral and neural mea-
sures, we highlight several of the important gaps in the
literature, and we make explicit suggestions for how
the field can achieve a better understanding of the mech-
anisms that preserve temporal memories when experi-
ences repeat across time.

How Does Stimulus Repetition Influence
Judgments of Temporal Recency?

Understanding how repetition of a stimulus influences
recency judgments has been the subject of extensive
behavioral research and has fundamentally informed the-
ories of episodic memory (Hintzman, 2010). In particular,
one of the long-standing debates in the field of episodic

memory concerns whether repetitions of a stimulus
involve encoding separate memory traces for each occur-
rence of the stimulus versus strengthening of the original
trace (Hintzman, 2010). Although these perspectives lead
to relatively similar predictions about some forms of mem-
ory (e.g., recognition and recall), they make very different
predictions regarding how repetitions will influence tem-
poral recency judgments. Specifically, although a strength-
based account can explain how recency judgments are
generated for stimuli encountered once before, it is harder
for a strength-based account to explain recency judgments
(or at least accurate recency judgments) when a single
stimulus has repeated across time. Thus, the fact that
human participants are able to form separate temporal
memories when a stimulus repeats over time (Yntema &
Trask, 1963) has been an important and informative piece
of evidence in generating theoretical models of episodic
memory.
At the extreme, repetitions of a stimulus could be

encoded entirely independently of each other. Indeed,
several computational models of episodic memory treat
stimulus repetitions as independent (Hintzman, 1988;
Mensink & Raaijmakers, 1988). However, a variety of
evidence from behavioral studies suggests that even if
stimulus repetitions (S1, S2,…) are encoded as separate
memories, they are not necessarily independent (Antony
et al., 2022; Begg & Green, 1988). Although this noninde-
pendence could take several forms, of particular interest
here is the idea that the encoding of S2 can elicit the rein-
statement of S1.
One of the earliest and most elegant behavioral findings

motivating the idea of repetition-induced reinstatement
came from a study byHintzman in which participants stud-
ied a list of stimuli, some of which repeated (Hintzman &
Block, 1973). Participants were later asked tomake tempo-
ral judgments about these stimuli. When the judgment
involved estimating how much time passed between the
presentations of two different stimuli, participants were
close to chance. In contrast, when the judgment involved
estimating how much time passed between two presenta-
tions of the same stimulus, participants were much more
accurate. Hintzman argued that this benefit of stimulus
repetition suggests that the second presentation (S2) rein-
stated the first presentation (S1), including information
about when the first presentation occurred (i.e., its
recency relative to S2). By this account, the recency infor-
mation (S1–S2 lag) was thus incorporated into S2 encod-
ing making it available during the subsequent recency
judgments. Similar evidence suggesting a link between
reinstatement and subsequent recency judgments has also
been observed when S1 and S2 are related, but not iden-
tical (Hintzman, Summers, & Block, 1975). Outside the
domain of temporal memory, the idea of repetition-
induced reinstatement is also motivated by evidence that
stimulus repetition has overadditive effects on recognition
memory (Begg & Green, 1988), and it has been incorpo-
rated in leading theoretical accounts of spacing effects on

Figure 1. Schematic illustration of stimulus repetition (rep) across
temporal contexts. (A) When an experience is repeated across time
(e.g., eating pizza from a favorite restaurant), the experience becomes
associated with multiple temporal contexts. This has the potential to
create interference when later trying to recall a specific temporal
episode. (B) When a stimulus repeats in a new temporal context, this
may trigger reinstatement of the prior temporal context in which the
stimulus was encoded (e.g., the show you were watching the last time
you had pizza for dinner).
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memory (i.e., why spaced learning benefits subsequent
memory; Siegel & Kahana, 2014).
Although the evidence described above suggests a rela-

tively simple story in which stimulus repetitions benefit
subsequent recency judgments and that this benefit can
be explained by repetition-induced reinstatement, the
story is likely more complicated. For example, there is also
evidence that stimulus repetition can bias temporal mem-
ory estimates and that the influence of stimulus repetition
on temporal memory may interact, in complicated ways,
with the temporal interval (lag) between repetitions
(Hintzman, 2010; Morton, 1968). We consider potential
relationships between lag, reinstatement, and temporal
memory later in this article.
Taken together, existing behavioral studies have clearly

established that when stimuli repeat across time,
encoding-related factors can powerfully influence subse-
quent judgments of when these experiences occurred.
In particular, evidence points to the idea that stimulus rep-
etitions induce a reinstatement of prior experiences that
can, at least in some cases, preserve temporally specific
memories. However, a fundamental limitation of these
behavioral studies is that reinstatement is inferred—it is
offered as an account of behavioral findings—as opposed
to being directly measured. Although it may be feasible,
through clever experimental design, to influence the
degree to which repetition-induced reinstatement occurs
(Manns, Galloway, & Sederberg, 2015; Jacoby &
Wahlheim, 2013) or to generate indirect behavioral
measures of reinstatement (DuBrow & Davachi, 2014),
we argue that neuroimaging and electrophysiological
recordings offer a powerful means for more directly mea-
suring repetition-induced reinstatement. Such measure-
ments have the potential to more precisely capture the
specific aspects of an experience that are reinstated
(e.g., temporal context information) and, thereby, to bet-
ter understand precisely how and why repetition-induced
reinstatement influences temporal memory.

Neural Measures of Repetition-
induced Reinstatement

Thus far, we have reviewed behavioral evidence motivat-
ing the idea that when a stimulus is repeated, this can trig-
ger reinstatement of earlier encounters with that stimulus.
However, what information, exactly, gets reinstated? For
reinstatement to benefit subsequent temporal recency
judgments, reinstatement presumably must include some
information about when the stimulus was previously
encoded. Temporal context models provide a useful
framework for conceptualizing and testing these ideas.
According to these models, when a stimulus is encoded
into memory, it is bound to other stimuli that were
recently encountered along with other thoughts, emo-
tions, and so forth that might be lingering in conscious-
ness (Polyn, Norman, & Kahana, 2009; Howard & Kahana,
2002). Together, this information comprises the temporal

context in which a stimulus is encoded. These temporal
context representations are thought to gradually drift over
time (Figure 2A), changing as stimuli and thoughts enter
and fade from consciousness. Critically, these temporal
context representations can explain a variety of types of
temporal memory decisions and phenomena (DuBrow
& Davachi, 2017), including judgments of temporal
recency (Howard, Shankar, Aue, & Criss, 2015).

In a study by Howard et al., intracranial electrophysio-
logical signals were recorded as human participants
encoded a series of pictures (Howard, Viskontas, Shankar,
& Fried, 2012). In particular, they focused on activity pat-
terns in the medial temporal lobe (MTL) given prior evi-
dence implicating MTL regions in encoding contextual
information ( Jenkins & Ranganath, 2010; Eichenbaum,
Yonelinas, & Ranganath, 2007). They found that MTL activ-
ity patterns gradually changed over time, consistent with
the idea of a slowly drifting temporal context representa-
tion. Critically, when a picture repeated (S2), MTL activity
patterns jumped back to the state that preceded (and
followed) the picture’s original occurrence (i.e., activity
patterns that were temporally adjacent to S1; Figure 2B).
Thus, stimulus repetition putatively triggered the rein-
statement of the temporal context in which the stimulus
was originally encoded. In a related study, again using
intracranial electrophysiological recordings, Manning and
colleagues measured neural reinstatement as human par-
ticipants freely recalled words from a study list (Manning,
Polyn, Baltuch, Litt, & Kahana, 2011). They found that
when a given stimulus was freely recalled from memory,
the evoked neural activity pattern resembled not only
the activity pattern evoked by the encoding of that
stimulus but also the activity patterns evoked by stim-
uli that were encoded nearby in time to the recalled
stimulus (Figure 2C). Strikingly, this incidental neural
reinstatement of temporally adjacent stimuli strongly
paralleled the structure of behavioral measures of free
recall—namely, after recalling a given word, participants
tended to transition to recalling temporally adjacent
words (Figure 2C). This provides a critical link between
neural measures of temporal context reinstatement
and behavioral expressions of the temporal organiza-
tion of memories.

Although the studies by Howard and colleagues and
Manning and colleagues provide compelling and impor-
tant neural evidence of temporal context reinstatement,
it is notable that neither of these studies involved deci-
sions about temporal recency—that is, participants were
not asked to recall when events occurred. In a human fMRI
study by DuBrow and Davachi, participants studied a
series of picture stimuli, with pictures drawn from two dif-
ferent visual categories (faces and objects; DuBrow &
Davachi, 2014). During a subsequent temporal recency
test, participants were shown pairs of images from the
same category (e.g., two faces) and were asked to judge
which image occurred most recently (Figure 2D). Pattern
classification analyses were used to measure the strength
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of visual category information (face- or object-related
information) during these recency judgments. The key
question was whether recency judgments would elicit
reinstatement of stimuli that were encoded between the
two presented stimuli. Indeed, they found that during
temporal memory decisions—where participants were
always shown two pictures from the same category—

evidence from the pattern classifiers reflected the categories
of images that had intervened during encoding (Figure 2D).
In other words, temporally adjacent pictures were rein-
stated during the recency judgments. DuBrow and Davachi
also conducted a parallel behavioral study that further rein-
forced this conclusion (DuBrow & Davachi, 2014). Collec-
tively, the findings by DuBrow and Davachi provide an

Figure 2. Neural evidence for temporal context reinstatement. (A) According to temporal context models, individual memory traces (circles) are
bound to the temporal context in which they occur, which slowly drifts over time (color gradient). (B) Findings from Howard and colleagues (2012)
in which participants viewed a series of images while electrophysiological data were recorded. Repetition of a stimulus (S2) triggered reinstatement
(ensemble similarity) of the original presentation (S1) and temporally adjacent stimuli. (C) Findings from Manning and colleagues (2011). Participants
recalled previously studied words while electrophysiological data were recorded. Neural activity patterns during recall of a word resembled not
only the activity pattern during encoding of that word but also the activity patterns during encoding of temporally adjacent words (neural context
reinstatement). This neural reinstatement effect paralleled the behavioral tendency to successively recall words that were studied close together
in time (behavioral contiguity effect). (D) Findings from DuBrow and Davachi (2014). Human participants encoded images from distinct visual
categories (faces vs. objects) and were then shown a pair stimuli and asked to recall which image occurred most recently. If recency judgments
involve reinstatement of intervening items, this makes the prediction that when presented with, for example, two faces, neural evidence for faces
(measured via pattern classifiers) should be lower if intervening items included objects (Switch condition) versus only faces (No Switch condition).
Evidence supported the reinstatement account.
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important and direct link between temporal context rein-
statement and temporal recency judgments.
Notably, all of the neural evidence for temporal context

reinstatement that we describe above comes from situa-
tions in which participants were explicitly instructed to
recall or to think back to previously encoded information.
In other words, these are measures of neural reinstate-
ment during recall. In contrast, we began this article by
considering how temporal memories are preserved across
repeated encoding of a stimulus. Does neural reinstate-
ment also occur across repeated encoding of a stimulus?
This is an important question with respect to ecological
relevance because, in the real world, we do not have
explicit demands to think back to every prior encounter
with a stimulus. Thus, for temporal context reinstatement
to be considered a mechanism that protects temporal
memories when stimuli repeat, it is imperative to show
that stimulus repetitions can trigger neural reinstatement
of prior encounters in the absence of explicit demands to
recall these prior experiences.
In a series of human fMRI studies, Xue and colleagues

measured neural pattern similarity as stimuli were repeat-
edly encoded (S1, S2, etc.) without any demand to recall
prior presentations and, at least in one study, without any
knowledge of an upcomingmemory test (Xue et al., 2010).
They found that greater neural pattern similarity across
repetitions was associated with better subsequent recog-
nition memory. They interpreted this finding as evidence
that stimulus repetitions triggered—and benefited
from—the reinstatement of prior encounters. Although
this finding is potentially open to other interpretations
that do not involve reinstatement, per se, a reinstatement
interpretation is consistent with ideas derived from the
behavioral literature reviewed above.
Even stronger evidence that repeated encoding can trig-

ger spontaneous reinstatement comes from studies using
classic memory interference paradigms in which a single
stimulus is paired with multiple associates (A–B, A–C
designs where A represents a repeated stimulus and B
and C represent distinct associates). Using pattern-based

fMRI analyses, several studies have shown that A–C encod-
ing trials can elicit spontaneous reinstatement of the B
term (i.e., the associate previously encoded with A;
Chanales et al., 2019; Koen&Rugg, 2016; Richter, Chanales,
& Kuhl, 2016; Zeithamova, Dominick, & Preston, 2012;
Kuhl et al., 2010). Although slightly different from evi-
dence of reinstatement of temporally adjacent informa-
tion, described above, these studies establish the critical
point that when a stimulus repeats, even in the absence
of explicit demands to recall prior encounters, this can
trigger spontaneous reinstatement of prior contextual
information. Notably, this spontaneous reinstatement
of prior contextual information has also been shown to
actively prevent subsequent memory interference (Chanales
et al., 2019; Kuhl et al., 2010). However, these examples of
neural reinstatement in A–B, A–C paradigms have not
been directly connected to subsequent judgments of tem-
poral recency. This represents an important avenue for
future research.

Relationship between Repetition-induced
Reinstatement and Temporal Memory

Having presented behavioral and neural evidence that rep-
etition of a stimulus can trigger reinstatement of prior
encounters with that stimulus, we next turn to the ques-
tion of “How does repetition-induced reinstatement influ-
ence subsequent temporal recency judgments?” Here,
there is relatively less evidence to draw from. Moreover,
as we note above in our consideration of the existing
behavioral evidence, there are multiple viable—and
potentially complex—ways in which reinstatement might
relate to subsequent temporal recency judgments.

In a recent study (Zou et al., 2023), we tested whether
neural pattern similarity across repeated stimulus presen-
tations (S1–S2 similarity) predicted subsequent temporal
recency judgments—specifically the amount of time that
passed since the stimulus was first encountered (S1
recency; Figure 3A). In this study, the lags between stimu-
lus repetitions ranged from seconds to many months, and

Figure 3. Paradigm and findings from Zou and colleagues (2023). (A) Participants viewed thousands of images distributed, and repeated, across
many months. Later, participants performed a temporal recency judgment in which they were asked to estimate when each image was first
encountered. (B) Within hippocampal subfield CA1 and entorhinal cortex (ERC), greater neural pattern similarity across stimulus repetitions was
associated with more precise temporal memory estimate. This effect was absent in a control region: early visual cortex (V1).

Zou and Kuhl 5

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/doi/10.1162/jocn_a_02212/2470484/jocn_a_02212.pdf by U
niversity of O

regon user on 24 Septem
ber 2024



temporal recency judgments were only made at the very
end of the experiment (after 30–40 experimental sessions
distributed across ∼10 months). We found that greater
neural pattern similarity across stimulus repetitions was
associated with better (more precise) temporal recency
judgments. Notably, we observed these pattern similarity
effects within two MTL subregions that have specifically
been implicated in temporal memory (Figure 3B): hippo-
campal subfield CA1 (Mau et al., 2018; Davachi & DuBrow,
2015; Eichenbaum, 2014; MacDonald, Lepage, Eden, &
Eichenbaum, 2011; Huerta, Sun, Wilson, & Tonegawa,
2000) and entorhinal cortex (Montchal, Reagh, & Yassa,
2019; Goyal et al., 2018; Tsao et al., 2018). Although S1–
S2 neural pattern similarity is not, as we note above, an
unambiguous measure of reinstatement, the fact that
these effects occurred within regions implicated in temporal
memory is at least consistent with the idea that when
encoding a stimulus in a new temporal context (S2), the
stimulus’ original temporal context is reinstated and reen-
coded, thereby benefiting subsequent judgments of S1
recency. That said, this interpretation would benefit from
additional evidence—particularly using methods that
more directly measure temporal context reinstatement.

The findings by Zou and colleagues also raise other
questions (Figure 4). For example, does reinstatement of
the original temporal context (S1) carry potential costs? In
particular, it is possible that reinstatement of the S1 con-
text interferes with the encoding of the new temporal con-
text (S2; Duncan, Sadanand, & Davachi, 2012) or that it
increases the probability that S2 will be misattributed to
S1’s temporal context (Gershman, Schapiro, Hupbach, &
Norman, 2013; Sederberg, Gershman, Polyn, & Norman,
2011). In addition, another possibility is that reinstatement
might subtly bias temporal memory decisions. In other,
nontemporal forms of episodic memory, reinstatement
of previously encoded memories that are similar to a

current stimulus has been shown to drive differentiation
of corresponding MTL representations (Molitor, Sherrill,
Morton, Miller, & Preston, 2021; Chanales, Oza, Favila, &
Kuhl, 2017; Kim, Norman, & Turk-Browne, 2017; Favila,
Chanales, & Kuhl, 2016; Hulbert & Norman, 2015). Given
that representational similarity in the MTL has been
directly linked to subjective estimates of elapsed time
(Sherman, DuBrow, Winawer, & Davachi, 2023; Lositsky
et al., 2016; Ezzyat & Davachi, 2014), an intriguing possi-
bility is that reinstatement-induced differentiation of
temporal context representations (in the MTL) results
in exaggerated memory for the time between stimulus
repetitions—a “repulsive bias.” By this account, reinstate-
ment does not prevent encoding of the S2 temporal
context or induce forgetting of the S1 context—rather,
each temporal context is remembered relatively accu-
rately, but in a slightly biased manner. As we describe
later, temporal memory is prone to subtle biases
(Lositsky et al., 2016; Ezzyat & Davachi, 2014; Poynter,
1983), and repulsive biases in memory have been
observed for other, nontemporal features (Drascher &
Kuhl, 2022; Chanales, Tremblay-McGaw, Drascher, &
Kuhl, 2021; Zhao, Chanales, & Kuhl, 2021). Thus, although
these ideas are speculative, they represent an interesting
avenue for future research.

Repetition Lag and Event Boundaries

In the preceding sections, we advance an argument in
which stimulus repetitions induce reinstatement of prior
temporal contexts, thereby influencing subsequent judg-
ments of temporal recency. However, as noted in the pre-
ceding section, the consequences of reinstatement on
temporal memory are not, at present, well understood.
Here, we consider a pair of additional factors that may
determine the nature of this relationship: (1) the spacing,

Figure 4. Schematic illustration of relationships between stimulus repetition, temporal context reinstatement, and time/event boundaries. Open
questions are presented in text boxes.
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or lag, between stimulus repetitions and (2) whether stim-
ulus repetitions span event boundaries.
When a stimulus is repeated after a long lag (high spac-

ing), the probability of retrieving or reinstating the prior
encounter with that stimulus will, of course, be dimin-
ished (Wixted, 2004). Thus, spacing should influence
whether a stimulus repetition induces reinstatement.
However, even if reinstatement does occur, spacing
may also influence the consequences of reinstatement
(Tompary & Davachi, 2017). In particular, to the extent
that temporal context representations drift over time
(Manns, Howard, & Eichenbaum, 2007), then the similar-
ity between a reinstated temporal context representation
and a current temporal context representation will be
inversely proportional to lag. In a recent computational
model of spacing effects, Antony and colleagues argue
that these two factors—the probability of reinstatement
and the degree of similarity between reinstated versus
current contexts—can account for key features of spacing
effects, including the fact that spacing benefits are non-
monotonic (Antony, Liu, Zheng, Ranganath, & O’Reilly,
2023). In their model, as the lag between stimulus repe-
titions increases, any reinstatement that occurs is more
likely to trigger a prediction error signal (owing to greater
mismatch between the reinstated and current temporal
contexts). Interestingly, they propose that this error
signal should lead to abstracted or decontextualized rep-
resentations. Although the model is not explicitly
intended to explain temporal recency effects, it makes
an important prediction about the relationship between
lag, reinstatement, and temporal memory. Namely, any
reinstatement that occurs at long lags should actually dis-
rupt subsequent temporal recency judgments (because
of decontextualization). This represents an intriguing
prediction that could be empirically tested, but it would
require a direct or explicit measure of temporal context
reinstatement. Notably, the aforementioned study by Zou
and colleagues (Figure 3) found that, in contrast to rec-
ognition memory, temporal memory did not benefit from
greater spacing (Zou et al., 2023). However, this question
would benefit from an experiment explicitly geared
toward testing this question.
Importantly, time is not the only way to induce changes

in temporal context. Over the past decade, there has been
increased interest in the idea that event boundaries can
also influence cognitive and neural measures of temporal
context (DuBrow, Rouhani, Niv, & Norman, 2017). In con-
trast to slowly drifting temporal context representations,
event boundaries can create discontinuities or shifts in
temporal context (DuBrow, 2024; Clewett, DuBrow, &
Davachi, 2019; Radvansky & Zacks, 2017). Event bound-
aries can take many forms, from salient changes in low-
level perceptual information (Heusser, Ezzyat, Shiff, &
Davachi, 2018) to reward-related prediction errors (Rouhani,
Norman, Niv, &Bornstein, 2020). Critically, when two stimuli
span an event boundary, they are remembered as occurring
farther apart in time (Lositsky et al., 2016; Ezzyat & Davachi,

2014; Poynter, 1983), consistent with the idea that event
boundaries induce a change in temporal context, which is
then used to infer the elapsed time. Event boundaries have
also been shown to powerfully influence temporal order
memory—that is, memory for the relative recency of stimuli
(Pu, Kong, Ranganath, & Melloni, 2022; Wen & Egner, 2022;
Rouhani et al., 2020; Heusser et al., 2018; Horner, Bisby,
Wang, Bogus, & Burgess, 2016; DuBrow & Davachi,
2013). In particular, order memory tends to be impaired
for stimuli that span an event boundary compared to
stimuli within the same event. Thus, event boundaries
play a key role in shaping temporal context representa-
tions and, thereby, influencing temporal memories.

With respect to the focus of the current article, a key
question is whether event boundaries influence the
degree to which stimulus repetitions induce reinstate-
ment. That is, does an intervening event boundary
between repetitions (S1 → boundary → S2) increase,
decrease, or not affect the probability that S2 triggers rein-
statement of the S1 temporal context? Intuitively, it might
be expected that a change in context would reduce the
probability that S2 would reinstate S1. However, at least
with respect to recognition memory, there are mixed find-
ings with respect to whether a context change between S1
and S2 has any influence on the probability of recognition
at S2 (Baddeley, 1982). Interestingly, boundaries them-
selves have been shown to trigger reinstatement of pre-
ceding stimuli (Sols, DuBrow, Davachi, & Fuentemilla,
2017). Although speculative, it is possible that if a bound-
ary triggers reinstatement of S1, this could potentiate addi-
tional reinstatement at S2. However, to our knowledge,
existing studies do not directly test these ideas.

As with changes in temporal context that occur as a
function of spacing/lag, changes in temporal context that
are driven by event boundaries could also influence the
consequences of repetition-induced reinstatement. On
the one hand, the difference between the reinstated
and current temporal contexts should be greater when
repetitions span a boundary (Radvansky & Zacks, 2017),
and this could potentially result in error-driven differen-
tiation of the two temporal context representations (Kim
et al., 2017). On the other hand, it has been argued that
reinstating events that span event boundaries may pro-
mote integration across time that prevents differentia-
tion of temporal context representations (Clewett et al.,
2019; DuBrow & Davachi, 2016). Thus, building on more
general evidence identifying the factors that promote
memory differentiation versus integration (Brunec,
Robin, Olsen, Moscovitch, & Barense, 2020), it will be
of interest to specifically determine how event bound-
aries influence the consequences of temporal context
reinstatement (Figure 4). In particular, an intriguing pos-
sibility is that the relative degree of differentiation versus
integration induced by reinstatement may be predictive
of repulsive versus attractive biases in temporal memory
(Bein & Davachi, 2024; DuBrow & Davachi, 2014; Ezzyat
& Davachi, 2014).
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Summary

The question of how we remember when events occurred
in time is a question with a rich history in cognitive psy-
chology (Hintzman, 2003; Friedman, 1993) and neurosci-
ence (Eichenbaum, 2014). The fact that humans are able
to form and retain separate temporal memories for expe-
riences that repeat over time is not only important for
everyday behavior (e.g., remembering when you last
took a medication) but also foundational to theories of
episodic memory (Hintzman, 1988). Yet, the mecha-
nisms that protect temporally specific memories in the
face of repetition-related interference are not well under-
stood. Here, we propose that repeated encoding of a
stimulus can trigger reinstatement of prior temporal
contexts in which that stimulus occurred. In turn, this rein-
statementmay influence subsequent judgments of tempo-
ral recency. While we review evidence that this influence
can result in the strengthening of the reinstated temporal
context, we also raise the possibility that this influence
may produce interference or subtle biases in memory.

The idea that stimulus repetitions induce reinstatement
of prior experiences is motivated by behavioral studies
conducted long before modern neuroscience methods
for measuring memory reinstatement (Hintzman et al.,
1975; Hintzman & Block, 1973). We believe that more
recent neuroimaging and electrophysiological methods
formeasuring temporal context reinstatement (Yaffe et al.,
2014; Howard et al., 2012; Manning et al., 2011; Polyn,
Natu, Cohen, & Norman, 2005) create exciting opportuni-
ties for revisiting the question of how temporal memories
are retained across stimulus repetitions. That said, there is
still a need for new methods of measuring temporal con-
text reinstatement that leverage noninvasive neuroimaging
techniques and that can more precisely tease apart the rep-
resentation of a stimulus from its context (Figure 4).

With respect to identifying the specific brain regions
that support temporal context reinstatement and behav-
ioral expressions of temporal memory, there is rapidly
accumulating—and converging—evidence from human
and rodent studies. In particular, hippocampal area CA1
and entorhinal cortex have consistently been implicated
in processing and remembering temporal information
(Goyal et al., 2018; Mau et al., 2018; Tsao et al., 2018;
MacDonald et al., 2011; Huerta et al., 2000), with recent
evidence specifically implicating these regions in pro-
tecting temporal memories when experiences repeat
across time (Zou et al., 2023). Given the many open
questions concerning precisely how repetition-induced
reinstatement influences temporal memories—including
how these dynamics might be influenced by factors such
as temporal spacing and event boundaries—additional
research related to these topics has the potential to fur-
ther refine and inform theoretical accounts of temporal
context and episodic memory (Davachi & DuBrow,
2015; Howard et al., 2015; Polyn et al., 2009; Howard &
Kahana, 2002).
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