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Human neuroimaging studies have shown that the contents of episodic memories are represented in distributed 

patterns of neural activity. However, these studies have mostly been limited to decoding simple, unidimensional 

properties of stimuli. Semantic encoding models, in contrast, offer a means for characterizing the rich, multidi- 

mensional information that comprises episodic memories. Here, we extensively sampled four human fMRI subjects 

to build semantic encoding models and then applied these models to reconstruct content from natural scene im- 

ages as they were viewed and recalled from memory. First, we found that multidimensional semantic information 

was successfully reconstructed from activity patterns across visual and lateral parietal cortices, both when view- 

ing scenes and when recalling them from memory. Second, whereas visual cortical reconstructions were much 

more accurate when images were viewed versus recalled from memory, lateral parietal reconstructions were com- 

parably accurate across visual perception and memory. Third, by applying natural language processing methods 

to verbal recall data, we showed that fMRI-based reconstructions reliably matched subjects’ verbal descriptions 

of their memories. In fact, reconstructions from ventral temporal cortex more closely matched subjects’ own 

verbal recall than other subjects’ verbal recall of the same images. Fourth, encoding models reliably transferred 

across subjects: memories were successfully reconstructed using encoding models trained on data from entirely 

independent subjects. Together, these findings provide evidence for successful reconstructions of multidimen- 

sional and idiosyncratic memory representations and highlight the differential sensitivity of visual cortical and 

lateral parietal regions to information derived from the external visual environment versus internally-generated 

memories. 
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. Introduction 

Neuroimaging studies of human episodic memory have found that

he contents of memory retrieval are reflected in broadly distributed

atterns of neural activity ( Danker and Anderson 2010 ; Rissman and

agner 2012 ). While initial fMRI decoding studies of memory focused

n relatively coarse information such as the visual category to which

 stimulus belongs ( Kuhl et al., 2011 ; Polyn et al., 2005 ), more re-

ent studies have demonstrated item- or event-specific representations

 Favila et al., 2018 ; Lee et al., 2019 ; St-Laurent et al., 2015 ; Xiao et al.,

017 ). However, these studies have overwhelmingly focused on decod-

ng simple, unidimensional, and objective properties of stimuli. In con-

rast, real-world episodic memories are complex, multidimensional, and

ubjective ( Cooper and Ritchey 2019 ; Richter et al., 2016 ). Notably, this

imitation is often paralleled in behavioral measures of memory where

imple, categorical expressions of retrieval success or accuracy are more

ommon than the kinds of complex and idiosyncratic descriptions hu-
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ans actually use to describe memories ( Chen et al., 2017 ; Gilmore et al.,

021 ; Heusser et al., 2021 ). Thus, an important challenge for the field is

o develop neuroimaging measures that capture the richness and com-

lexity of episodic memory retrieval and to directly align these measures

ith behavioral expressions of memory that have similar richness and

omplexity. 

A handful of recent fMRI studies have moved closer toward captur-

ng the richness of memories by using voxel-wise encoding/decoding

odels ( Kay et al., 2008 ; Naselaris et al., 2011 ) to map fMRI activity

atterns to multidimensional measures of memory content. For exam-

le, Naselaris et al. (2015) demonstrated that low-level visual features

an be successfully reconstructed during mental imagery. Specifically,

hey extracted low-level visual features from complex natural images

nd trained algorithms to predict these features from fMRI activity pat-

erns elicited during visual perception. This mapping was then used to

redict features of independent natural images based on activity pat-

erns evoked during mental imagery. Using a similar approach applied
23 
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s  
o higher-level visual information, Lee and Kuhl (2016) mapped distinct

ace components to patterns of fMRI activity and then used these map-

ings to reconstruct faces held in working memory. In another study,

one et al. (2020) applied deep convolutional neural networks to com-

lex natural images in order to extract content information and map that

nformation to patterns of fMRI activity. They demonstrated that, during

emory recall, fMRI activity patterns reflect content information across

ultiple levels: from low-level visual information to high-level seman-

ic concepts. Collectively, these studies provide important evidence that

ultidimensional content representations can be mapped to patterns of

eural activity evoked during memory retrieval. Notably, however, none

f these studies used behavioral measures of memory that matched the

ichness of the neural measures. 

Complementing the studies described above, other fMRI studies have

mbraced more complex behavioral measures of verbal recall ( Chen et al.,

017 ; Gilmore et al., 2021 ; Heusser et al., 2021 ; Nguyen et al.,

019 ). For example, Chen et al. (2017) and Nguyen et al. (2019) ap-

lied latent semantic analysis (LSA) to verbal recall of movies and

eusser et al. (2021) used topic models to measure changes in verbal re-

all content over time. Each of these studies found that subject-specific

easures of verbal recall content were related to measures of fMRI activ-

ty. For example, in Chen et al. (2017) and Nguyen et al. (2019) , subjects

ith more similar behavioral expressions of recall —or more similar in-

erpretations of the stimuli —showed greater fMRI pattern similarity. In

eusser et al. (2021) , the specific time course of content changes during

erbal recall was predicted by changes in fMRI activity. These studies

trongly attest to the feasibility and value of measuring subject-specific

erbal recall and relating these behavioral expressions to patterns of

eural activity. However, it is important to note that these studies did

ot directly measure content information within fMRI data and, there-

ore, they did not directly align the content of behavioral recall with the

ontent of fMRI activity patterns. 

To the extent that multidimensional memory representations are

aptured by patterns of neural activity, an additional question is how

hese representations are distributed across cortical areas. Traditionally,

emory-based content representations have been measured within (or

ecoded from) sensory cortical regions involved during initial percep-

ual experience ( Danker and Anderson 2010 ). In particular, much of this

ork has focused on ventral temporal cortical areas which represent

igh-level visual category information ( Kuhl et al., 2011 ; Polyn et al.,

005 ). However, there is now substantial and accumulating evidence

hat the contents of memory retrieval are also robustly reflected in

ateral parietal cortex (LPC) ( Kuhl and Chun 2014 ; St-Laurent et al.,

015 ; Xiao et al., 2017 ). Much of this work has focused on the angu-

ar gyrus, which is not only a core component of the episodic memory

etwork ( Gilmore et al., 2015 ; Rugg and Vilberg 2013 ) but is heavily

nvolved in semantic processing ( Humphreys et al., 2021 ). Indeed, sev-

ral recent findings specifically suggest that LPC —and angular gyrus,

n particular —contains the kinds of rich, multidimensional informa-

ion that is critical for episodic remembering ( Bonnici et al., 2016 ;

owen et al., 2014 ; Favila et al., 2018 ; Huth et al., 2016 ; Lee et al.,

019 ; Lee and Kuhl 2016 ; Yu and Shim 2017 ). Interestingly, there is

lso emerging evidence for a potential dissociation in content repre-

entations across LPC and sensory cortices. Namely, whereas content

epresentations in sensory cortex are generally weaker during memory

etrieval compared to perception, content representations in LPC may

e as strong or stronger during memory retrieval compared to perception

 Favila et al., 2018 , 2020 ; Long and Kuhl 2021 ; Xiao et al., 2017 ). Thus,

nderstanding how memory representations are distributed across LPC

nd ventral temporal cortical areas remains an important objective with

mplications for theories of memory ( Favila et al., 2020 ; Rugg and King

018 ). 

Here, we sought to bridge neuroimaging methods for measuring

ultidimensional content representations with behavioral methods for

easuring complex, subjective, and idiosyncratic expressions of mem-

ry. To this end, we used semantic encoding models ( Kay et al., 2008 )
2 
nd an extensive-sampling fMRI design (thousands of trials per subject)

o map multidimensional semantic information from natural scene im-

ges to fMRI activity patterns. We then inverted these encoding models

 Ester et al., 2015 ; Kok et al., 2020 ; Sprague et al., 2016 ) to reconstruct

emantic information as subjects viewed and recalled images from mem-

ry. These fMRI-based content reconstructions were directly compared

o subjects’ verbal recall of the scenes using natural language process-

ng methods. This allowed us to test not only whether fMRI-based re-

onstructions captured the objective content within scene images, but

hether reconstructions matched subjective —and potentially idiosyn-

ratic (subject-specific) —details of how scenes were remembered. Ad-

itionally, by comparing reconstructions generated from different re-

ions of visual cortex and LPC, we tested whether these regions dif-

erentially expressed content information during image viewing ver-

us image recall. Finally, we tested whether semantic encoding models

uccessfully generalized across subjects —a question that has important

mplications for leveraging data-rich models from extensively-sampled

ubjects. 

. Materials and methods 

.1. Subjects 

Nineteen experimental sessions were collected from four human sub-

ects (two females, age 23–30 years) from the University of Oregon com-

unity. Three subjects completed five sessions each; one subject only

ompleted four sessions due to unavailability for a 5th session. The sam-

le size was modeled after Naselaris et al. (2015) , which used a simi-

ar encoding model procedure for memory-based reconstructions with a

ample size of 3 subjects and 5–6 sessions per subject. Despite our small

ample size, each subject was sampled extensively across a large number

f stimuli, a procedure which may have distinct advantages compared

o sampling many individuals across a more limited number of stim-

li ( Naselaris et al., 2021 ). All subjects were right-handed and reported

ormal or corrected-to-normal vision. Informed consent was obtained

n accordance with procedures approved by the University of Oregon

nstitutional Review Board. 

.2. Stimuli 

Two sets of image stimuli were prepared: one for use in a recognition

emory task and one for use in a recall memory task. The recognition set

ontained a total of 5000 complex scene images, which were selected

rom the Microsoft COCO dataset ( http://cocodataset.org/ , Lin et al.,

015 ). These images depict complex everyday scenes of common ob-

ects from 91 categories in their natural context. Each image in the

ataset is annotated with five written descriptions from independent

uman subjects. These descriptions capture the main content of the im-

ges and were used, in the present study, as information channels for

he inverted encoding model. For each subject and each session, 680

mages were randomly selected (without replacement) from the recog-

ition set. Of these, 600 were studied prior to the fMRI session and

erved as ‘old’ items in the recognition test. The remaining 80 images

erved as novel foils (‘new’ items) in the recognition test. The recall set

onsisted of a total of 100 images, also drawn from the Microsoft COCO

ataset. Each image was randomly paired with a texture (taken from the

nternet), creating a set of paired associates. The textures served as cues

uring the cued recall task (described below). For each session, 20 of

he paired associates were studied and tested. The same 20 pairs were

sed in each session for each subject in order to facilitate across-subject

nalyses. 

.3. Experimental design and procedures 

Overview of paradigm. Each session of the experiment consisted of two

eparate parts which were conducted across consecutive days ( Fig. 1 A).

http://cocodataset.org/
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Fig. 1. Experimental procedure. A . Overview of experimental phases. Each subject completed 4 to 5 experimental sessions. Each experimental session involved two 

consecutive days of tasks. On Day 1, subjects learned 20 associations between cues (textures) and associates (scenes) via a paired associate training procedure and 

were also familiarized with 600 additional scene images (image familiarization). No fMRI scanning was conducted on Day 1. On Day 2, subjects completed additional 

paired associate training and image familiarization before entering the scanner. During scanning, subjects completed a covert cued-recall test of the cue-associate 

pairs followed by a recognition memory test. After exiting the scanner, subjects completed an overt cued-recall test for the cue-associate pairs. B . The paired associate 

training included three phases: study, vividness test, and forced choice test. During study, subjects were shown textures followed by scenes and attempted to learn 

these associations. During the vividness test, subjects were shown textures and then indicated the vividness with which they were able to recall the corresponding 

scene. The correct scene was then shown as feedback. During the forced choice test, subjects were shown a texture followed by four previously-studied scenes and 

were asked to select the corresponding scene. C . In the scanned (covert) cued-recall phase, subjects were shown textures and rated the vividness with which they 

could recall the corresponding scene (as in the vividness test, but without feedback). D . In the scanned recognition memory test, subjects made old/new judgements 

for scenes (that did not include the scenes from the paired associate training). The sole purpose of the recognition memory test was to train the semantic encoding 

models. E . In the final (overt) recall test, subjects were shown textures and typed a sentence to describe the content of the corresponding scene. 

T  

l  

o  

i  

D  

t  

i  

c  

t  

a  

i  

p  

e  

t  

p  

a  

s  

t  

s

 

t  

r  

t  

n  

s  

o  

f  

a  

e  

p  

s  

w  

a  

t  

p  

p  

r  

i  

p  

m  

fi  

f  

r  

s  

t  

f  

s  

g  

p  

l  

i  

c  

s  

c  

i  

5  
he two-day protocol was intended to minimize fatigue given the overall

ength of the tasks. On Day 1 of each session, subjects were overtrained

n 20 paired associates (textures + scene images) and were familiar-

zed with a separate 600 scene images (from the recognition set). On

ay 2 of each session, subjects first completed additional training on

he paired associates from Day 1 and additional familiarization with

mages from the recognition set. Then, during fMRI scanning subjects

ompleted two phases: (1) a covert cued recall phase in which the 20

extures were repeatedly used to test memory for the associated scenes,

nd (2) a recognition memory phase which included the 600 familiar-

zed images + 80 lures. The rationale for conducting the cued recall

hase before the recognition memory phase was to minimize interfer-

nce/forgetting during the cued recall phase. Finally, subjects exited

he scanner and completed an overt (verbal) cued recall test for the 20

aired associates. This two-day procedure constituted a single session

nd each subject completed 4–5 sessions. In order to minimize across-

ession memory interference, there was a delay of at least 7 days be-

ween sessions, for each subject. Each subject completed all of their ses-

ions within a 2-month window. 

Paired associate training. Paired associate training was conducted at

he beginning of Day 1 (4–5 rounds) and the beginning of Day 2 (1

ound). Each round of paired associate training consisted of three dis-

inct phases in the following sequence: study, vividness test, study, vivid-

ess test, forced choice associative memory test. In the study phases,

ubjects saw and deliberately encoded each of the 20 paired associates,

ne pair at a time. On each trial, the cue (texture) was first presented

or 1 s, followed by a fixation cross for 0.5 s, and then the target im-

ge (scene) for 2 s. Another fixation cross was presented for 1 s at the
3 
nd of each trial (before the start of the next trial). In the vividness test

hases, each cue was presented for 1 s followed by a 3-point vividness

cale ( “1 2 3 ”) and subjects reported, via button press, the vividness with

hich they could recall the target image (1- Can’t remember, 2- Remember,

nd 3- Vividly remember ). The rationale for using a vividness report was

hat (1) it encouraged participants to recall the images in detail, (2) it

rovided a measure of task vigilance/compliance, and (3) it did not ex-

licitly orient subjects to specific semantic dimensions. The vividness

eport was self-paced. After responding, feedback was given by present-

ng the target image alone on the screen for 1.5 s. A fixation cross was

resented for 0.5 s in between trials. In the forced choice associative

emory test, a cue image was first presented for 1 s and then, after a

xation cross (0.5 s), four scene images appeared on the screen. The

our images included the target (correct) scene along with three scenes

andomly selected from the remaining 19 scenes in the set of paired as-

ociates studied in the current session. Subjects were instructed to select

he scene image that had been paired with the cue by pressing one of

our keys. There was no time limit to respond. After subjects made a

election, feedback was provided. If the correct image was selected, a

reen fixation cross was presented (0.5 s) followed by the correct image

resented in the center of the screen (1 s). If an incorrect image was se-

ected, a red fixation cross was presented (0.5 s) followed by the correct

mage (1 s) presented in the center of the screen. Finally, a black fixation

ross was presented for 1 s (until the start of the next trial). For each

ession, subjects were required to reach at least 95% accuracy for two

onsecutive rounds on Day 1 before proceeding to the Image Familiar-

zation Phase. Using this performance criterion, all subjects completed

 paired associate training rounds on Day 1 for each session, with the
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xception of one subject that reached the criterion by the 4th round for

ne of the sessions. 

Image Familiarization. For each session, Image Familiarization was

onducted on Day 1 and Day 2, immediately after the paired asso-

iate training rounds. During each familiarization phase subjects saw

ll 600 scene images presented in the center of the screen, one at a

ime and in random order, and distributed across five blocks (120 im-

ges/block). Subjects were instructed to try their best to remember each

mage for a later memory test (the recognition memory test). No be-

avioral responses were made. On Day 1, each image was presented

or 1 s with a 0.5 s fixation cross in between trials. On Day 2, each

mage was presented for 0.6 s with a 0.4 s fixation point in between

rials. 

Scanned Cued Recall. For each session, subjects completed two fMRI

uns of a covert cued recall task ( Fig. 1 B, left), each lasting 6 min and

6 s. As during the paired associate training rounds, subjects were

hown cues (textures) and indicated the vividness with which they could

ecall the corresponding scene image using a 3-point scale. Each run

onsisted of 40 recall trials (2 trials per association per run), with the or-

er of trials in each run pseudorandomized with the constraint that the

ame association was not tested consecutively. Every trial started with a

ue image centrally presented over a white background for 0.5 s. Next,

 question mark appeared in the center of the screen (3.5 s), prompting

ubjects to make their vividness response using a button box. Finally, a

xation cross was presented either for 4 s (75% of trials) or 8 s (25% of

rials). 

Scanned Recognition Memory Test. Following the cued recall task, sub-

ects completed the recognition memory test ( Fig. 1 B) which consisted

f eight runs, each lasting 6 min and 20 s. Each run contained 75 old

mages and 10 novel images presented in random order, for a total

f 680 images across the 8 runs. Each trial began with the presenta-

ion of a scene in the center of the screen (1 s). Next, a question mark

3 s) prompted subjects to make an old/new decision by pressing one

f two keys on a button box. After a small number of the recognition

rials (6/85), a fixation cross was presented for 4 s. The rationale for

ncluding a disproportionate number of old images (600 out of 680)

as because fMRI data from the recognition memory test was used to

rain encoding models applied to the cued recall task and we sought

o increase the extent to which these models were trained on ‘memory

ata’ (old trials). Specifically, recent evidence indicates systematic dif-

erences in the spatial activity patterns associated with memory-based

ontent representations compared to perception-based content represen-

ations ( Favila et al., 2020 ). Thus, our intuition —though not a point we

irectly tested —was that transfer from the recognition to recall trials

ight benefit from the recognition trials having a high percentage of

ld trials. Additionally, the recognition memory test served as a cover

ask to help keep subjects engaged while viewing hundreds of images per

ession. 

Post-scan Cued Recall. After subjects exited the scanner, they com-

leted a final cued recall test ( Fig. 1 B). However, in contrast to the prior

ued recall tests which recorded covert (vividness) memory judgments,

ere subjects were asked to explicitly describe their memories. On each

rial, subjects were shown a cue (texture) and were asked to type a sen-

ence to describe the content of the associated scene image. Specifically,

he instructions asked subjects to “write a complete but simple sentence ”

hat should “include adjectives if possible, describe the main characters,

he setting, or the relation of the objects in the image, and try to be con-

ise ”. After subjects typed their response on the computer screen, they

ressed enter to advance to the next trial. No time limit was given and

ach of the 20 associations from the current session was tested once, in

andom order. 

.4. fMRI data acquisition 

fMRI scanning was conducted on a Siemens 3 T Skyra scanner at the

obert and Beverly Lewis Center for NeuroImaging at the University of
4 
regon. Before the functional imaging, a whole-brain high-resolution

natomical image was collected for each subject and each session us-

ng a T1-weighted protocol (grid size 256 × 256; 176 sagittal slices;

oxel size 1 × 1 × 1 mm). Whole-brain functional images were collected

sing a T2 ∗ -weighted multi-band accelerated EPI sequence (TR = 2 s;

E = 25 ms; flip angle = 90°; 72 horizontal slices; grid size 104 × 104;

oxel size 2 × 2 × 2 mm). Each cued recall scan consisted of 188 vol-

mes. Each recognition memory test scan consisted of 190 volumes. 

.5. fMRI data preprocessing 

MRI data were first converted to Brain Imaging Data Structure

BIDS) format using in-house scripts. MRIQC v0.15.1 ( Esteban et al.,

017 ) was used for preliminary data quality assessment. We applied

 threshold that no more than 20% of TRs in any scan run could

xceed a framewise displacement of 0.3 mm; however, no scan runs

ere excluded using this threshold. Preprocessing was performed

sing FMRIPrep v1.5.4 (RRID:SCR_016216) ( Esteban et al., 2019 ), a

ipype (RRID:SCR_002502) based tool, with the default processing

teps. Each structural image was corrected for intensity non-uniformity

nd skull-stripped. Brain surfaces were reconstructed using recon-all

rom FreeSurfer v6.0.1. Spatial normalization to the ICBM 152 Non-

inear Asymmetrical template version 2009c was performed through

onlinear registration with the antsRegistration tool of ANTs v2.1.0,

sing brain-extracted versions of both T1w volume and template. Brain

issue segmentation of cerebrospinal fluid (CSF), white-matter (WM)

nd gray-matter (GM) was performed on the brain-extracted T1w using

AST (FSL v5.0.9). 

Functional data were slice time corrected, motion corrected, and cor-

ected for field distortion. This was followed by co-registration to the

orresponding T1w using boundary-based registration with six degrees

f freedom using bbregister (FreeSurfer v6.0.1). Motion correcting trans-

ormations, BOLD-to-T1w transformation and T1w-to-template (MNI)

arp were concatenated and applied in a single step using antsApply-

ransforms (ANTs v2.1.0) using Lanczos interpolation. We then applied

 high pass filter using a cutoff period of 100 s. Finally, the prepro-

essed fMRI data were smoothed by a 1.6 mm full-width-half-maximum

aussian kernel with FSL’s SUSAN (Smoothing over Univalue Segment

ssimilating Nucleus) ( Smith and Brady 1997 ). Grand-mean intensity

ormalization of each functional image volume was performed by a sin-

le multiplicative factor. Confounding regressors including framewise

isplacement (FD), global signal, white matter, and cerebrospinal fluid

ignals were generated for each volume. Within-subject reconstructions

ere conducted in subjects’ native EPI space, and across-subject recon-

tructions were conducted in the standard space. 

.6. Regions of interest 

Regions of interest (ROIs) included four subregions of the posterior

ateral parietal cortex (LPC), the ventral temporal cortex (VTC), and the

ccipital temporal cortex (OTC) ( Fig. 4 A). Post-hoc analyses for addi-

ional brain regions, including two control ROIs (primary auditory cor-

ex, primary motor cortex) are reported in Table S1. ROIs were defined

sing FreeSurfer’s Destrieux atlas (the following label numbers refer to

imple_surface_labels2009.txt). The subregions of LPC consisted of the

ngular gyrus (ANG, #25), supramarginal gyrus (SMG, #26), superior

arietal lobule (SPL, #27), and intraparietal sulcus (IPS, #57). The VTC

OI was comprised of regions 21, 23, 51, 52, 61, and 62. The OTC

OI was comprised of regions 2, 19, 43, 58, and 60. The ROIs were

o-registered to the functional images and further masked by subject-

pecific whole-brain masks generated from functional images to exclude

reas where signal dropout occurred. All ROIs contained brain regions

rom both hemispheres (mean number of voxels for each ROI: 1816 in

NG; 1942 in SMG; 1594 in SPL; 1318 in IPS; 4459 in VTC; 3854 in

TC). 
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.7. Single-item response estimation 

For each session, separate general linear models (GLM) were cre-

ted for each of the 20 images during the cued recall task and each of

he 680 images during the recognition memory test. A least-square sin-

le method was used for each item, where the given item was modeled

ith a single regressor and all the remaining items were modeled with

nother regressor. The presentation of each stimulus was modeled as an

mpulse and convolved with a canonical hemodynamic response func-

ion (double gamma). The GLM included head-motion parameters (six

otation and translation head movement estimates) and nuisance regres-

ors marking outlier TRs (FD > 0.3 mm from previous TR) as confound-

ng regressors. The t -statistic values associated with each image were

sed in the semantic encoding model to increase reliability by noise

ormalization ( Walther et al., 2016 ). 

.8. Image content reconstruction 

To represent the content of each scene image, we used the Word2vec

mbedding algorithm. This algorithm transforms single words into 300-

imensional vectors (word embeddings). Similarities/distances between

hese vectors reflect the similarity of the corresponding words. In our

nalysis, we took advantage of the annotation captions (five captions

or each image) from the COCO dataset. After a standard preprocess-

ng procedure that included filtering of stop words and tokenization,

e obtained the word embeddings for the critical words in the annota-

ion captions. Notably, no corrections were applied for negations given

heir very low frequency. We calculated the mean vector, across the

ve captions, to represent the content in each image ( Fig. 2 A). We then

pplied principal component analysis (PCA) on the entire pool of 300-

imensional word embeddings for the 5100 images (i.e., the full set of

ecognition + recall images). The first 30 components, which explained

8.59% of the total variance (Fig. S1), were used as information chan-

els in the semantic encoding model. We refer to these 30 components

s semantic component scores. The goal of reconstruction analyses was to

ccurately predict the semantic component scores. 

Reconstructions of semantic component scores were generated us-

ng a cross-validation approach. fMRI activation patterns evoked during

he recognition trials for ‘old’ images were used as training patterns to

stimate the relationship between fMRI activity patterns and semantic

omponent scores ( Fig. 2 B). Data from ‘new’ trials during the recogni-

ion memory test were not used for training (or testing) of the encoding

odels. We modeled the response in each voxel as a weighted sum of

he information channels (i.e., the 30 semantic components): 

 1 = 𝑊 𝐶 1 

here 𝐵 1 (n images × m voxels) is the activation patterns of voxels

 t maps) during the recognition memory test, 𝐶 1 (n images × k com-

onents) is the modeled response of each component, or information

hannel, on each trained image, and W (k components × m voxels) is a

eight matrix quantifying the contribution of each information channel

o each voxel ( Fig. 2 B). We can solve for W using the following ordinary

east-squares linear regression: 

̂
 = 𝐵 1 𝐶 

𝑇 
1 
(
𝐶 1 𝐶 

𝑇 
1 
)−1 

Given the estimated weights within an ROI ( �̂� ) and a novel pat-

ern of activation ( 𝐵 2 ) from the recognition trials (recognition-based

econstruction) or the recall trials (recall-based reconstruction), we can

ompute an estimate of the semantic component scores by inverting the

odel ( Fig. 2 C): 

̂
 2 = 

(
�̂� 

𝑇 �̂� 

)−1 
�̂� 

𝑇 𝐵 2 

Recognition-based reconstruction. Separately for each subject, N-fold

ross-validation was performed on recognition data where N equals the

umber of scanning runs pooled across all of the sessions that each

ubject completed (i.e., 40 runs for the three subjects that completed
5 
 sessions each and 32 runs for the remaining subject that completed

 sessions). For each fold, the activation patterns from N-1 runs (i.e.,

9 or 31 runs) were used as training patterns and those of the remain-

ng run served as the testing set (i.e., the trials for which the semantic

omponent scores were predicted). In this manner, all trials iteratively

ontributed to both model training and model testing. 

Recall-based reconstruction. To predict semantic component scores

uring recall trials, activation patterns from recognition runs were used

s training data and the estimated weights based on the recognition tri-

ls (training data) were then applied to the recall trials (testing data)

o predict the semantic component scores for each of the recalled im-

ges. Recall-based reconstructions were performed in two ways: within-

ubjects and across-subjects. For within-subject reconstructions, all of

he recognition runs across all sessions for a given subject were used as

he training data and the testing data were all of the recall runs across

ll sessions for that same subject. For across-subject reconstructions, all

f the recognition runs across all sessions from N-1 subjects were used

s the training data and the testing data were all of the recall runs across

ll sessions from the held-out subject. 

.9. Reconstruction accuracy 

For all reconstruction analyses, accuracy was based on Fisher-

ransformed Pearson correlations between predicted (reconstructed)

nd ‘actual’ semantic component scores. ‘Actual’ semantic component

cores were either based on COCO annotations (which were derived

rom an independent set of subjects) or from subjects’ verbal recall re-

ponses (which were collected in the final cued recall test, after fMRI

canning). Unless otherwise noted, successful reconstruction accuracy

as defined as greater within-item correlations than across-item correla-

ions ( Fig. 2 D). Within-item correlations refer to correlations between

econstructed and actual semantic component scores corresponding to

he same image. Across-item correlations refer to the mean of corre-

ations between reconstructed and actual semantic component scores

orresponding to different images [e.g., r (reconstructed scores for im-

ge 1, actual scores for image 2)]. Across-item correlations were always

estricted to images from the same fMRI session. Additionally, within-

tem correlations for recognition-based reconstructions were only com-

ared against across-item correlations for other recognition-based re-

onstructions; likewise, within-item correlations for recall-based recon-

tructions were only compared against across-item correlations for other

ecall-based reconstructions. Group-level results were obtained by first

veraging correlations within sessions for each subject and then across

essions and subjects. In addition to correlation values, for each ROI we

lso report the mean percentile rank of reconstructions (i.e., the rank

f the within-item correlation among the distribution of all across-item

orrelations). Note: the mean rank values were not used for statistical

nalyses; rather, they are included to provide a more intuitive measure

f reconstruction accuracy. 

.10. Statistical analysis 

Unless otherwise stated, mixed-effects models were used to test

he reconstruction accuracy of correlation difference measures. Linear

ixed-effects models were implemented with lme4 in R 3.6.3, fitted us-

ng restricted maximum likelihood. To determine whether within-item

orrelations differed from across-item correlations, we used the likeli-

ood ratio test to compare models with (full model) and without (null

odel) the predictor of interest (i.e., correlation type: within-item corre-

ation or across-item correlation). Subject and session numbers were in-

luded as random factors. For statistical tests of reconstruction accuracy

ithin individual ROIs, uncorrected p values are reported. In tests that

ompared reconstruction accuracies across ROIs or conditions, mixed-

ffects models were used with the subject number and session number

ncluded as random factors. 
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Fig. 2. Schematic overview of the semantic content reconstruction analysis. A . Generating semantic component scores. Annotations from the COCO image dataset 

were used as semantic descriptions of the images. After filtering out the stop words, the captions were transformed into 300-dimensional vectors using the Word2Vec 

embedding method. PCA was run on all of the 5100 candidate images, and the first 30 principle components (hereinafter, semantic components) were extracted so 

that the content of each image could be expressed as a weighted sum of these components. B . Training the encoding model. Linear regression was used to estimate a 

model that learned the mapping between the semantic component scores of the trained images (i.e., the training set) and the fMRI activation patterns they evoked. 

C . Testing the encoding model. The regression weights obtained from the training set were applied to an independent set of images (i.e., the testing set) to predict 

semantic component scores. Encoding models were tested using cued recall trials (shown) or recognition trials (not shown). D . Assessing reconstruction accuracy. 

The accuracy of reconstruction for each image was determined by computing the Pearson correlations between the predicted semantic component scores and the 

actual semantic component scores. Actual semantic component scores were either based on the COCO dataset captions (left side of boxes) or the verbal recall 

responses subjects generated in the final cued-recall test (right side of boxes). Correlations were separately computed for ‘matching’ images (within-item similarity) 

and non-matching images (across-item similarity). Reconstructions were considered accurate if within-item similarity was higher than across-item similarity. 
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. Results 

.1. Behavioral performance 

Group-level results were obtained by first averaging data within ses-

ions for each subject and then across sessions and subjects. On Day 1 of

ach session, subjects studied 20 paired associates (textures with scenes)

cross 4–5 rounds. For each round, memory was tested via cued recall

nd forced-choice associative memory tasks. In the cued recall tasks,

ubjects reported how vividly they could recall the target image on a

-point scale. The mean percentage of “Vividly remember ” responses

the highest rating) was 49.74% ± 22.96% (SD) in round 1, 93.16% ±
0.23% in round 2, 99.34% ± 1.83% in round 3, 99.74% ± 0.79% in

ound 4, and 100% ± 0.00% in round 5 ( Fig. 3 A). In the forced-choice

ssociative memory test, subjects were asked to select the target im-

ge for each cue from a set of three image choices. Performance was

igh across all rounds (Round 1: 97.89% ± 4.19%; Round 2: 98.95% ±
.09%; Round 3: 98.68% ± 2.27%; Round 4: 98.68% ± 2.81%; Round

: 97.81% ± 3.15%). Critically, performance remained high at Day 2

s evidenced by the rate of “Vividly remember ” responses during the

ued recall tasks (pre-scan cued recall: 98.16% ± 3.89%; scanned cued

ecall task: 98.55% ± 6.00%; Fig. 3 A) and performance on the forced-

hoice associate memory test, which occurred prior to scanning (98.95%
6 
 2.09%; Fig. 3 A). Note: given the extremely high success rate of recall,

MRI analyses comparing successful vs. failed recall trials were not fea-

ible. 

After exiting the scanner, subjects completed a final post-scan cued

ecall task during which they generated a sentence to describe the con-

ent in each target image. These subject-specific recall-based descrip-

ions were transformed to 300 dimensional vectors (word embeddings)

sing Word2Vec. The COCO annotations for each of these images were

lso transformed to word embeddings using Word2Vec. We then calcu-

ated the Pearson correlations between the word embeddings from sub-

ects’ verbal recall and those from the independent COCO annotations.

s shown in Fig. 3 B, each subject exhibited markedly higher within-

tem correlations (i.e., correlations between verbal recall vectors and

OCO annotation vectors corresponding to the same image) than across-

tem correlations (i.e., correlations between recall vectors and annota-

ion vectors corresponding to different images). These results confirm

hat subjects were able to accurately describe images from memory and

lso validate our approach of characterizing verbal recall through word

mbeddings. 

For the recognition memory test conducted during scanning, mean

ecognition sensitivity (d’) across sessions and subjects was 1.98 ± 0.52.

he mean hit rate for studied images was 84.63% ± 11.51%, and the

ean correct rejection rate for new images was 76.97% ± 12.48%. A
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Fig. 3. Behavioral performance across the entire experimental procedure. A . Forced-choice test accuracy was measured during the paired associate training rounds 

on Days 1 and 2. The first five rounds (r1–r5) were completed during Day 1. The 6th round (r6) was completed during Day 2 (just prior to fMRI scanning). Chance 

accuracy = 25%. B . Vividness ratings were made during the first five paired associate training rounds on Day 1 (r1–r5), during the 6th paired associate training round 

on Day 2 (r6), and during the covert cued recall test during fMRI scanning on Day 2 (scan). Ratings were rescaled from 1, 2, 3 to 0, 0.5, 1.0 with 0 corresponding to 

the lowest vividness rating and 1.0 to the highest vividness rating. For A and B , data are represented by boxplots with dots representing data from individual sessions 

with each subject represented by a different shape. Note: for many of the rounds performance was at ceiling and boxplots are therefore compressed. C . Verbal recall 

performance from the overt cued recall test following scanning on Day 2. For each subject (Sub. 1–4) and each recalled image, Pearson correlations were computed 

between the 30 semantic components generated from subjects’ verbal responses and semantic components generated from the independent COCO annotations of (i) 

the same images (within-item similarity) or (ii) other images from the recall set (across-item similarity). For within-item similarity, each dot represents the within- 

item correlation for a single recall trial to its corresponding COCO annotations. For across-item similarity, each dot represents the mean z -transformed correlation 

between a single recall trial and all non-corresponding COCO annotations. 
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ixed effects model including subject and session numbers as random

actors showed that the hit rate was significantly higher than the false

larm rate ( 𝜒2 
1 = 89.96, p < 0.0001, 𝛽 = 0.616, SE = 0.030). 

.2. Reconstruction of content from viewed images 

For fMRI analyses, we first tested for successful reconstruction of im-

ge content from activity patterns evoked in visual and lateral parietal

ortices during the recognition memory task (when images were visu-

lly presented on the screen). Image content was defined by 30 semantic

omponent scores derived from the 300-dimensional Word2Vec vectors

rom the COCO annotations ( Fig. 2 ). The 30 semantic components ex-

lained 68.59% of the variance in COCO annotations for the images

sed in the study. As with the behavioral analyses above, we assessed

econstruction accuracy by comparing within-item vs. across-item simi-

arity. Here, however, within-item similarity was defined as the Fisher-

ransformed Pearson correlation between the reconstructed component

cores for a given image (as predicted from the inverted fMRI encod-

ng model) and the ‘actual’ semantic component scores for that image

derived from COCO annotations). Across-item similarity was defined

s the mean Fisher-transformed Pearson correlation between predicted

omponent scores for a given image and actual component scores for

ifferent images (from the same session). Reconstruction of content in-

ormation was determined to be successful if within-item similarity was

reater than across-item similarity, as determined by mixed-effects lin-

ar models which included subject and session numbers as random fac-

ors. Consistent with our previous studies ( Cowen et al., 2014 ; Lee and

uhl 2016 ), robust reconstruction accuracies were obtained from vi-

ual regions (VTC: rank = 64.52%; 𝜒2 
1 = 3024 .1, p < 0.0001, 𝛽 = 0.136,

E = 0.002; OTC: rank = 66.39%; 𝜒2 
1 = 3785 . 6 , p < 0.0001, 𝛽 = 0.146,

E = 0.002) as well as ANG and other lateral parietal ROIs (ANG:

ank = 57.15%; 𝜒2 
1 = 754 . 4 , 𝛽 = 0.063, SE = 0.002; SMG: rank = 54.31%;

2 
1 = 277 . 8 , 𝛽 = 0.040, SE = 0.002; SPL: rank = 56.58%; 𝜒2 

1 = 624 . 0 ,
= 0.059, SE = 0.002; IPS: rank = 57.23%; 𝜒2 

1 = 774 . 5 , 𝛽 = 0.066,

E = 0.002; p values < 0.0001) ( Fig. 4 A,B). However, reconstruction

ccuracies sharply varied across ROIs (main effect of ROI from repeated-

easures ANOVA: F 5,90 = 350.69, p < 0.0001, 𝜂2 
𝑝 
= 0 . 95 ), with higher

ccuracies in the visual ROIs compared to the parietal ROIs ( p ’s <

.0001 for all paired-samples t -tests comparing the VTC and OTC ROIs

o each of the lateral parietal ROIs). For results from additional brain

egions —including prefrontal cortex, lateral temporal cortex, primary

otor cortex, and primary auditory cortex —see Table S1. 
7 
.3. Reconstruction of image content from cued recall task 

Next, we extended our method to test for content reconstruction for

mages retrieved from memory during the cued recall task. Critically,

nd in contrast to recognition-based reconstructions for which the to-be-

econstructed image was visually present, here the to-be-reconstructed

mage was visually absent (subjects were only shown the texture cues)

hus requiring top-down retrieval of the target image. For this analy-

is, we trained the semantic encoding model with ‘old’ images from the

ecognition set (exploiting the large number of recognition trials) but

ested it on images from the cued recall task. As with the recognition-

ased reconstructions, evidence for successful recall-based reconstruc-

ions was obtained if within-item similarity (correlations between the

emantic component scores predicted from the inverted encoding model

nd the ‘target’ semantic component scores) were reliably higher than

cross-item correlations. As described in the following sections, we used

everal approaches for defining the ‘target’ semantic component scores.

As a first step, we defined target semantic component scores based

n the COCO annotations (as in the preceding section which tested for

econstruction accuracy during the recognition memory task). Success-

ul recall-based content reconstruction was observed across each of the

isual and parietal regions (VTC: rank = 60.08%; 𝜒2 
1 = 83 . 9 , p < 0.0001,

= 0.083, SE = 0.009; OTC: rank = 55.24%; 𝜒2 
1 = 24 . 6 , p < 0.0001,

= 0.043, SE = 0.009; ANG: rank = 55.29%; 𝜒2 
1 = 26 . 6 , p < 0.0001,

= 0.049, SE = 0.009; SMG: rank = 55.22%; 𝜒2 
1 = 26 . 0 , p = 0.0001,

= 0.048, SE = 0.009; SPL: rank = 56.12%; 𝜒2 
1 = 24 . 5 , p < 0.0001,

= 0.047, SE = 0.009; IPS: rank = 57.08%; 𝜒2 
1 = 32 . 6 , p < 0.0001,

= 0.056, SE = 0.010; Fig. 4 C). Accuracy significantly varied across

OIs (main effect of ROI: F 5,90 = 3.46, p = 0.007, 𝜂2 
𝑝 
= 0 . 16 ), with ac-

uracy numerically highest in VTC. To provide a sense of the subjective

ccuracy of recall-based reconstructions, we used the “most_similar ”

unction of Word2Vec to generate examples of words that were most

imilar to the reconstructed semantic components. The “most_similar ”

unction generates these words by computing the cosine similarity be-

ween the mean of the projection weight vectors (derived from the en-

oding model) and the vectors for each word in the Word2Vec model.

ig. 5 shows examples for images with varying degrees of recall-based

econstruction accuracy. Specifically, we pooled the reconstructed se-

antic component scores in VTC across all subjects and sessions, and

hen rank ordered these reconstructed scores by accuracy (match to the

arget scores). Examples of the “most similar ” words are included for

econstructions that were in the top 1%, top 25%, and top 50%. 
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Fig. 4. Accuracy for fMRI-based reconstructions of semantic component 

scores. A . Anatomical regions of interest (ROIs), visualized on the inflated 

surface of an averaged template brain (from FreeSurfer). Top: left lateral 

view. Bottom: left medial view. B . Mean reconstruction accuracies of se- 

mantic component scores for each ROI based on encoding models trained 

and tested on recognition trials. Independent COCO annotations were used 

to define the ‘actual’ content of each image and semantic component scores 

from these annotations were then compared to semantic component scores 

reconstructed from fMRI activity patterns during the covert cued recall 

phase. Accuracy is expressed as within-item correlations – across-item cor- 

relations, with positive values (i.e., > 0) reflecting successful (item-specific) 

reconstructions. Accuracy was significantly above chance for all ROIs. C . 

As in B , but based on encoding models trained on recognition trials and 

tested on recall trials. Accuracy was significantly above chance for all ROIs. 

D . Difference in reconstruction accuracy for recognition vs. recall trials ( B 

vs. C ). Positive values reflect higher accuracy for recognition trials than re- 

call trials. Only VTC and OTC exhibited significantly greater accuracy for 

recognition-based reconstructions than recall-based reconstructions. Also 

see Fig. S2 for similarity matrices of semantic component scores recon- 

structed from each ROI, separately for recognition and recall trials. Notes: 

dots represent data from individual sessions with each subject represented 

by a different shape; ∗ ∗ ∗ p < 0.001. 
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While all ROIs exhibited above-chance content reconstruction for

oth recognition-based and recall-based reconstructions, the difference

etween recognition- versus recall-based reconstructions markedly var-

ed across ROIs, as reflected by an interaction between trial type (recog-

ition, recall) and ROI ( F 5,90 = 24.88, p < 0.0001, 𝜂2 
𝑝 
= 0 . 58 ). Whereas

ontent reconstruction accuracy was much higher for recognition than

ecall in VTC ( 𝜒2 
1 = 15 . 6 , p < 0.0001, 𝛽 = 0.052, SE = 0.012) and OTC

 𝜒2 
1 = 50 . 7 , p < 0.0001, 𝛽 = 0.103, SE = 0.010), reconstruction accu-

acy in parietal regions did not significantly differ for recognition versus

ecall trials (ANG: 𝜒2 
1 = 2 . 16 , 𝛽 = 0.014, SE = 0.009; SMG: 𝜒2 

1 = 0 . 58 ,
= − 0.008, SE = 0.011; SPL: 𝜒2 

1 = 1 . 49 , 𝛽 = 0.012, SE = 0.010; IPS:
2 
1 = 0 . 74 , 𝛽 = 0.010, SE = 0.011; p values > 0.140) ( Fig. 4 D). Thus,

hereas VTC and OTC exhibited a clear ‘preference’ for images that

ere visually present (recognition trials), reconstructions from parietal

egions were of comparable success when images were visually present

recognition trials) or entirely driven by memory (recall trials). 

Given that the visual cortical ROIs (VTC and OTC) contained many

ore voxels than the parietal ROIs, one concern is that main effects of

OI and/or interactions by ROI may have been driven by differences

n the number of voxels. To address this concern, we randomly sub-

ampled voxels from the VTC and OTC ROIs for each subject so that

hey matched the mean size of the ANG ROI. Critically, the interaction

etween trial type (recognition, recall) and ROI remained significant

 F 5,90 = 23.17, p < 0.001, 𝜂2 
𝑝 
= 0 . 56 ). For recognition trials alone, the

ain effect of ROI was also significant ( F 5,90 = 286.5, p < 0.0001,
2 
𝑝 
= 0 . 94 ), driven by markedly higher accuracies for the visual ROIs.

or recall trials alone, the main effect of ROI was no longer significant

 F 5,90 = 1.05, p = 0.394, 𝜂2 
𝑝 
= 0 . 06 ). 

.4. Similarity between reconstructed content and verbal descriptions of 

emories 

In the preceding analyses, the target semantic content of each im-

ge was defined by image annotations that are part of the COCO im-
8 
ge dataset. We next tested the degree to which semantic component

cores reconstructed from the inverted fMRI encoding models (mea-

ured during the scanned cued recall task) matched the semantic com-

onent scores derived from subjects’ own verbal memory of each im-

ge (measured during the post test) ( Fig. 6 A). As described for behav-

oral analysis of the verbal recall data ( Fig. 3 B), each subject’s ver-

al recall of each image was translated into 30 semantic component

cores. These target component scores could then be readily compared

o (correlated with) the semantic component scores predicted from the

nverted fMRI encoding models. Again, we found higher within- than

cross-item correlations in each of the visual and parietal ROIs ( Fig. 6 B)

VTC: rank = 58.18%; 𝜒2 
1 = 49 . 7 , p < 0.0001, 𝛽 = 0.087, SE = 0.012;

TC: rank = 54.70%; 𝜒2 
1 = 21 . 2 , p < 0.0001, 𝛽 = 0.055, SE = 0.011;

NG: rank = 55.22%; 𝜒2 
1 = 14 . 1 , p < 0.0001, 𝛽 = 0.050, SE = 0.013;

MG: rank = 54.20%; 𝜒2 
1 = 12 . 3 , p = 0.0004, 𝛽 = 0.047, SE = 0.001;

PL: rank = 53.23%; 𝜒2 
1 = 7 . 4 , p = 0.007, 𝛽 = 0.038, SE = 0.014; IPS:

ank = 53.93%; 𝜒2 
1 = 7 . 4 , p = 0.007, 𝛽 = 0.036, SE = 0.013). Accu-

acy varied across ROIs (main effect of ROI: F 5,90 = 2.75, p = 0.024,
2 
𝑝 
= 0 . 13 ), with accuracy numerically highest in VTC. These results con-

rm that the reconstructed semantic information from LPC and visual

egions matched subjects’ verbal descriptions of their memories. 

While the preceding analysis confirms a match between verbal re-

all and reconstructed semantic component scores, an even stricter test

s whether the semantic component scores reconstructed from a given

ubject’s fMRI data more closely resembled the semantic component

cores from that subject’s verbal recall compared to semantic component

cores from other subjects’ verbal recall of the exact same images. To test

his, we first calculated the Pearson correlations between the semantic

omponent scores reconstructed from a given subject’s inverted fMRI

ncoding model and the corresponding semantic component scores de-

ived from that same subject’s verbal recall (within-subject similarity).

e then compared this within-subject similarity to across-subject simi-

arity: the correlations between a given subject’s reconstructed seman-

ic component scores and the corresponding semantic component scores
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Fig. 5. Examples of reconstructed image content from VTC. (Left) Rank of the 

reconstruction accuracy pooled over all subjects and sessions. (Middle left) Ex- 

ample images being recalled. (Middle right) The top 5 most similar words and 

word combinations describing the semantic component scores reconstructed 

from VTC. The words were generated by the Word2Vec default ‘most_similar’ 

function. (right) Similarity scores between vectors corresponding to the content 

reconstructed from VTC and vectors of the Word2Vec most similar words. 
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o  
erived from different subjects’ verbal recall of the same images. It is im-

ortant to emphasize that both of these measures were within-item cor-

elations (i.e., they relate to the exact same images). If within-subject

imilarity exceeds across-subject similarity, this provides evidence for

 subject-specific correspondence between fMRI-based reconstructions

nd verbal recall. 

For each subject, session, and ROI we compared within-subject simi-

arity to across-subject similarity in order to generate an accuracy score

or each image. This image-specific accuracy score reflected the percent-

ge of comparisons for which within-subject correlations were greater

han across-subject correlations. For example, for a given image recalled

y subject 1, the fMRI-based reconstructed semantic component scores

ould be correlated with the semantic component scores derived from

erbal recall from subject 1 (within-subject similarity) and with the se-

antic component scores derived from verbal recall from subjects 2,

 and 4 (across-subject similarity). If, for example, the within-subject

orrelation [ r (1,1)] was greater than two of the three possible across-

ubject correlations [ r (1,2), r (1,3), r (1,4)], this would correspond to

n accuracy of 66.66% for that image. In this manner, the mean ac-

uracy was computed for each subject, session, and ROI. Chance-level

ccuracy was 50% (i.e., by chance, within-subject similarity should ex-

eed across-subject similarity 50% of the time). Strikingly, we observed

bove-chance accuracy —i.e., subject-specific reconstructions —in VTC

54.39%, t 18 = 2.90, p = 0.009, Cohen’s d = 0.66) —which was also

he ROI that exhibited the highest recall-based reconstruction accuracy
9 
n each of the preceding analyses. Accuracy did not exceed chance in

ny of the other ROIs [OTC: M = 49.21%, t 18 = − 0.36, p = 0.720,

ohen’s d = − 0.08; ANG: M = 47.76%, t 18 = − 0.96, p = 0.348, Co-

en’s d = − 0.22; SMG: M = 51.36%, t 18 = 0.67, p = 0.512, Cohen’s

 = 0.20; SPL: M = 50.40%, t 18 = 0.24, p = 0.816, Cohen’s d = 0.05; IPS:

 = 48.11%, t 18 = − 1.04, p = 0.310, Cohen’s d = − 0.24]. 

To more explicitly emphasize subject-unique information expressed

uring verbal recall, we also repeated the analysis described above

ut only after subtracting out the semantic component scores from the

OCO annotations from each subject’s verbal recall component scores.

n other words, we subtracted out ‘normative’ information from each

ubject’s recall. With this approach, we again observed above-chance

ccuracy —i.e., subject-specific reconstructions —in VTC ( M = 55.26%,

 18 = 2.58, p = 0.019, Cohen’s d = 0.59), and also in SMG ( M = 53.95%,

 18 = 2.17, p = 0.043, Cohen’s d = 0.50). Accuracy was not above chance

or any of the other ROIs ( p ’s > 0.05). 

Finally, to directly establish the degree to which subject-specific re-

onstructions depended on variability in verbal recall across subjects,

e computed the mean correlations in verbal recall for each pair of

ubjects recalling the same images (see Tables S2 and S3). For each sub-

ect and session, we then median split the images in the recall session

ccording to whether they were associated with high or low across-

ubject variability (i.e., low vs. high correlations). We then computed

ubject-specific reconstruction accuracy, as described above. Across

OIs, subject-specific reconstruction accuracy was significantly greater

or high-variability images than low-variability images (main effect of

ariability: F 1,18 = 5.56, p = 0.030, 𝜂2 
𝑝 
= 0 . 24 ; Fig. S3). Thus, the ability

o measure subject-specific reconstructions benefitted from variability

n how different subjects recalled the same image. 

.5. Across-subject reconstruction of recalled memories 

Finally, we tested whether information ‘learned’ by the semantic en-

oding models (i.e., the mappings between voxel activity patterns and

emantic component scores) successfully transferred across individuals.

ore specifically, we tested whether the contents of memory recall for

ach subject could be reconstructed using encoding models trained on

ata from independent subjects. To test this, we iteratively trained se-

antic encoding models using the recognition data from three of the

our subjects and tested the model on recall trials from the held-out

ubject. That is, the weight matrix that was applied to each subject’s

MRI activity patterns from the recall trials was entirely derived from

ndependent subjects. We first tested content reconstruction accuracy by

orrelating the reconstructed component scores with component scores

erived from the COCO annotations (as in Fig. 4 C). Again, within-item

imilarity was compared against across-item similarity. Successful re-

onstruction (greater within-item similarity than across-item similarity)

as observed in ANG (rank = 53.23%; 𝜒2 
1 = 13 . 6 , p = 0.0002, 𝛽 = 0.033,

E = 0.009), SPL (rank = 52.39%; 𝜒2 
1 = 5 . 5 , p = 0.020, 𝛽 = 0.022,

E = 0.010), IPS (rank = 52.15%; 𝜒2 
1 = 5 . 4 , p = 0.020, 𝛽 = 0.022,

E = 0.009), VTC (rank = 56.90%; 𝜒2 
1 = 37 . 8 , p < 0.0001, 𝛽 = 0.056,

E = 0.009), and OTC (rank = 53.98%; 𝜒2 
1 = 10 . 5 , p = 0.001, 𝛽 = 0.027,

E = 0.008) ( Fig. 7 A). 

We next replicated this analysis with the only difference being that

econstructed component scores were correlated with component scores

erived from each subject’s (own) verbal recall (as in Fig. 6 B). Again,

ithin-item similarity was greater than across-item similarity in ANG

rank = 54.39%; 𝜒2 
1 = 15 . 7 , p < 0.0001, 𝛽 = 0.049, SE = 0.012), SPL

rank = 52.11%; 𝜒2 
1 = 6 . 4 , p = 0.011, 𝛽 = 0.032, SE = 0.013), IPS

rank = 52.96%; 𝜒2 
1 = 7 . 7 , p = 0.005, 𝛽 = 0.034, SE = 0.012), VTC

rank = 55.06%; 𝜒2 
1 = 24 . 1 , p < 0.0001, 𝛽 = 0.056, SE = 0.011), and OTC

rank = 53.10%; 𝜒2 
1 = 6 . 4 , p = 0.011, 𝛽 = 0.031, SE = 0.012) ( Fig. 7 B). In-

erestingly, reconstruction of verbal recall content was not significantly

ifferent when the encoding models were trained/tested across sub-

ects ( Fig. 7 B) vs. trained/tested within-subjects ( Fig. 6 B) (main effect

f within- vs. across-subject encoding model: F 1,18 = 2.06, p = 0.168,
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Fig. 6. Correspondence between semantic component scores reconstructed from fMRI vs. derived from verbal recall. A . Schematic of the analysis. For each to-be- 

recalled image for each subject, semantic component scores were reconstructed (predicted) from fMRI activity patterns using semantic encoding models trained on 

the recognition trials and tested on the recall trials. These reconstructed semantic component scores were then correlated with semantic component scores derived 

from subjects’ verbal recall of the same image (measured during the post-scan overt cued recall test). B . Reconstruction accuracy as reflected by the difference 

between within-item vs. across-item correlations, with all correlations performed within-subject. Reconstruction accuracy was significantly above chance for all 

ROIs. C . Subject-specific reconstructions. To test for subject-specific (idiosyncratic) reconstructions, the semantic component scores reconstructed from one subject’s 

fMRI data were correlated with semantic component scores generated from (i) the same subject’s verbal recall data (e.g., Sub. 1 - > Sub. 1, black arrow, in A ) and 

(ii) other subjects’ verbal recall data of the exact same images (e.g., Sub- 1 - > Sub. 2, gray arrows, in A ). Reconstructions were considered to contain subject-specific 

information when within-subject correlations were higher than the across-subject correlations. Data shown reflect the mean percentage of within-subject correlations 

that exceeded across-subject correlations. Accuracy was significantly above chance (dash line, 50%) only for VTC. Notes: dots represent data from individual sessions 

with each subject represented by a different shape; ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001. 

Fig. 7. Across-subject application of the semantic encoding models. For these analyses, the semantic encoding model was iteratively trained on recognition trials 

from 3 of the 4 subjects and then tested on recall trials from the held-out subject. A . Mean accuracy of reconstructed semantic component scores for each ROI based 

on comparison to semantic component scores derived from COCO annotations (within-item correlations – across-item correlations). B . Mean reconstruction accuracy 

for each ROI based on comparison to semantic component scores derived from verbal recall (within-item correlations – across-item correlations). For B , although the 

training/testing of the encoding models was performed across subjects, the covert recall trials used for reconstructing the semantic component scores and the verbal 

recall trials used for testing accuracy were always within the same subject. Notes: dots represent data from individual sessions with each subject represented by a 

different shape; ∗ ∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001, two tailed. 
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𝑝 
= 0 . 10 ). These findings provide evidence that, across subjects, the

appings between semantic content and fMRI activity patterns were

hared to a degree that encoding models could be transferred to inde-

endent subjects to reconstruct the contents of memory recall. 

. Discussion 

In the current study, we extracted high-level semantic features from

omplex natural images and modeled relationships between these se-
10 
antic features and fMRI activity patterns using voxelwise encoding

odels. By inverting the encoding models, we tested whether the seman-

ic content of retrieved memories could be reconstructed from evoked

MRI activity patterns. Using a multiple-session training procedure, we

how that semantic content was successfully reconstructed from fMRI

ctivity patterns in lateral parietal and visual cortices. Notably, how-

ver, reconstruction accuracy differed across these regions according to

hether images were visually present (during recognition) or cued by
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rbitrarily-associated abstract images (during recall). Whereas recon-

truction accuracy in visual cortex was markedly lower when images

ere recalled from memory (recall trials) compared to when they were

isually present (recognition trials), lateral parietal regions were rela-

ively insensitive to this difference between trial types. Separately, by

pplying natural language processing methods to subjects’ verbal recall

ata and projecting these recall data into the same feature space as the

MRI reconstructions, we also established that fMRI-based reconstruc-

ions reliably matched subjects’ verbal recall data. In fact, reconstruc-

ions from ventral temporal cortex reflected idiosyncratic differences in

ow different subjects remembered the exact same image. Finally, we

how that encoding models trained on a subset of subjects reliably trans-

erred to held-out subjects, indicating that the mapping between fMRI

ctivity patterns and semantic content was consistent enough across

ubjects to allow for across-subject reconstructions. Collectively, these

ndings provide important evidence for multidimensional memory rep-

esentations in lateral parietal and visual cortices and establish the rele-

ance of these neural representations to complex behavioral expressions

f memory recall. 

.1. Reconstruction and recall of multidimensional memory representations

Numerous prior fMRI studies have demonstrated content-sensitivity

f fMRI activity patterns in visual and lateral parietal cortices dur-

ng memory retrieval ( Favila et al., 2018 ; Kuhl et al., 2011 ; Kuhl and

hun 2014 ; Lee et al., 2019 ; Polyn et al., 2005 ; St-Laurent et al.,

015 ). However, the majority of this evidence comes from studies that

ave measured an objective, single stimulus property or dimension.

or example, many studies have tested for decoding of visual cate-

ory information ( Kuhl et al., 2011 ; Polyn et al., 2005 ). Others have

emonstrated an item-specific ‘match’ between fMRI activity patterns

licited during memory encoding and those elicited during memory re-

rieval ( Favila et al., 2018 ; Kuhl and Chun 2014 ; Lee et al., 2019 ; St-

aurent et al., 2015 ). While the current findings also constitute evidence

or item-specific representations (in that our analyses revealed differ-

nces between individual scene images), the key difference in the cur-

ent study is that item-specific representations were ‘built’ by predicting

nd combining constituent features ( Lee and Kuhl 2016 ; Naselaris et al.,

011 ). In fact, reconstructions were based on encoding models that were

ot trained on the to-be-reconstructed images ( Brouwer and Heeger

009 ). Thus, the stimulus-specific representations observed here cannot

e explained by subjects generating verbal labels or stimulus-specific

ags during encoding and then re-expressing that label/tag during re-

all. 

The motivation for establishing multidimensional neural represen-

ations of memories is that these measures have the potential to cap-

ure the richness, subjectivity, and idioscynracies with which real world

emories are recalled. Critically, however, validation of these neural

epresentations requires behavioral expressions of memory that also

apture the same richness, subjectivity, and idiosyncracies. Our solu-

ion to this problem was to use natural language processing methods

hat allowed our fMRI and behavioral data to be described using the

ame feature dimensions. Considering the behavioral recall data alone,

ext embeddings were highly sensitive to differences between images

 Fig. 3 B, C) validating the use of this method to characterize verbal re-

all data ( Heusser et al., 2021 ; Song et al., 2021 ). Moreover, across vi-

ual and lateral parietal ROIs, there was strong correspondence between

MRI-based reconstructions and subjects’ verbal recall ( Fig. 6 B), demon-

trating that the multidimensional fMRI reconstructions aligned with

he multidimensional expressions of verbal recall. Most strikingly, re-

onstructions generated from ventral temporal cortex were significantly

ore similar to subjects’ own verbal recall compared to other subjects’

erbal recall of exactly the same images. In other words, ventral tem-

oral cortex reconstructions reflected subjective or idiosyncratic differ-

nces in how scene images were remembered. This effect is particularly

otable when considering that there were no experimental pressures for
11 
ubjects to use unique language or to differentiate their responses from

ther subjects. Thus, these methods may be even more sensitive to sub-

ective/idiosyncratic information in experimental contexts where there

re factors that promote memory differentiation ( Favila et al., 2016 ;

ulbert and Norman 2015 ; Kim et al., 2017 ). 

.2. Reconstructions in lateral parietal cortex versus visual cortical areas 

Not surprisingly, reconstructions from visual cortical areas (VTC,

TC) were markedly higher when images were visually present (recog-

ition trials) compared to when they were visually absent (recall tri-

ls). In contrast, this fundamental distinction between trial types did

ot significantly influence reconstruction accuracy in LPC regions. No-

ably, several recent studies have specifically shown that, in contrast to

isual cortical regions, LPC representations are stronger during mem-

ry recall compared to memory encoding or perception ( Akrami et al.,

018 ; Favila et al., 2018 , 2020 ; Long and Kuhl 2021 ; Xiao et al., 2017 ).

hile a definitive account of why LPC is biased towards memory-based

nformation is not yet clear ( Favila et al., 2020 ), the current findings

rovide additional support for a relative preference toward memory-

ased information in LPC. Here, however, we did not observe stronger

more accurate) LPC reconstructions during recall compared to recogni-

ion. That said, it is important to emphasize that recognition-based re-

onstructions were generated from models trained and tested on recog-

ition trials whereas recall-based reconstructions were generated from

odels trained on recognition trials but tested on recall trials . Thus, a

irect comparison of reconstruction accuracy for recall versus recogni-

ion trials is not an apples-to-apples comparison. Instead, the critical

tatistical comparison is the relative sensitivity of visual versus LPC re-

ions to the difference in trial types. Indeed, this interaction was highly

ignificant ( Fig. 4 C). 

An obvious question raised by the current findings is whether recall

econstructions would be significantly better if the encoding model had

een trained only on recall trials ( Chen et al., 2017 ). This is particu-

arly relevant for LPC where transfer from visual perception (recogni-

ion) to recall may be limited ( Favila et al., 2018 , 2020 ; Long and Kuhl

021 ; Xiao et al., 2017 ). Enhancing overall reconstruction accuracy in

PC might also have revealed greater heterogeneity across LPC ROIs.

n our study, however, training the encoding model only on recall tri-

ls was not feasible because the number of recall trials was relatively

mall (far fewer than the number of recognition trials). At a practical

evel, recall trials are much harder to include in large numbers because

hey depend on pre-training the paired associations (e.g., we used an

xtensive training procedure to ensure successful, vivid recall; Fig. 1 ).

owever, in an effort to address the potential concern of poor transfer

rom ‘pure perception’ trials to recall trials, we opted to pre-expose sub-

ects to images in the recognition set such that the images used for model

raining were ‘old’ images. The sole rationale for the pre-exposure phase

as that the semantic encoding models might better transfer to recall

rials if the training trials had some memory component. Specifically,

e reasoned that the representational format of a recall trial might be

ore similar to an ‘old’ recognition trial than to an entirely novel stimu-

us. While this thinking was informed by recent findings ( Akrami et al.,

018 ; Favila et al., 2018 , 2020 ; Long and Kuhl 2021 ; Xiao et al., 2017 ),

t was not our intention —nor are we able —to test whether this de-

ign feature actually improved model transfer. That said, it does rep-

esent an interesting question that could be tested empirically in future

tudies. 

While we observed evidence for idiosyncratic (subject-specific) re-

ationships between fMRI-based reconstructions and verbal recall when

onsidering reconstructions from VTC, we did not observe significant

elationships for any of the LPC ROIs. On the one hand, this null result

or LPC regions is surprising in light of evidence that memory reacti-

ation in LPC has been associated with subjective qualities of memory

ecall ( Bone et al., 2020 ; Johnson et al., 2015 ; Kuhl and Chun 2014 ;

ichter et al., 2016 ). However, across analyses, reconstruction accuracy
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as higher in VTC than in LPC ROIs, meaning there simply may have

een better sensitivity within VTC to subtle differences in within-subject

ersus across-subject comparisons. As described above, it is possible that

raining the encoding models on recall trials (as opposed to recognition

rials) might boost performance in LPC ROIs and thereby improve sen-

itivity to subject-specific differences. Indeed, we view this as a very in-

eresting and reasonable possibility. Alternatively, it is possible that LPC

referentially expresses representational formats of retrieved memories

hat are relatively shared across subjects ( Chen et al., 2017 ). Given that

oth of these are viable possibilities, we would caution against draw-

ng conclusions based on the absence of significant subject-specific ef-

ects in the LPC ROIs. Instead, we view the significant results in VTC

s a proof of concept that our methodological approach can be used

o identify subject-specific idiosyncrasies in how complex images are

emembered. 

.3. Semantic encoding models generalize across subjects 

Although we deliberately used an extensive-sampling procedure to

aximize the amount of within-subject training data available for the

ncoding models (see Fig. S4 for consideration of how the amount of

ithin-subject training data influenced model performance), we also

how that encoding models transferred quite well across subjects. Specif-

cally, training encoding models using recognition trials from N-1 sub-

ects allowed for successful recall-based reconstruction in held out sub-

ects ( Fig. 7 ). In fact, recall-based reconstruction was of comparable ac-

uracy when using within-subject encoding models ( Fig. 6 B) vs. across-

ubject encoding models ( Fig. 7 B). This successful transfer across sub-

ects indicates that the mapping between semantic components and

MRI activity patterns was shared —at least to some degree —across dif-

erent individuals. Importantly, this shared mapping between semantic

nformation and fMRI activity patterns is not at odds with our finding

or the idea) of idiosyncratic memory representations. For example, con-

ider two individuals that had breakfast together. These individuals may

ave a common neural representation of the concept of coffee, and each

f them may have had coffee for breakfast. However, when remember-

ng breakfast, these individuals may differ in the degree to which the

oncept of coffee is a salient component of their memory and, therefore,

n the degree to which the neural representation of coffee is activated

hen they remember breakfast. Thus, leveraging shared mappings (i.e.,

ncoding models trained across different individuals) need not come

t the expense of identifying idiosyncratic ways in which individuals

erceive or remember their experiences ( Finn et al., 2018 ; Finn et al.

020 ). 

More generally, the success of the across-subject encoding mod-

ls has two main implications. First, this finding adds to a growing

ody of evidence that, even for complex and naturalistic stimuli (e.g.,

ovies and narratives), there is a surprising degree of consistency

cross individuals in how these stimuli are represented in patterns of

eural activity ( Chen et al., 2017 ; Finn et al., 2018 ; Hasson et al.,

004 ; Zadbood et al., 2017 ). Second, leveraging across-subject encoding

odels could have substantial practical —and theoretical —advantages.

or example, as noted above, it was not feasible in our experimental

aradigm for each subject to learn and recall thousands of different

cenes (due to the training time it would require and the deterioration

n memory performance that would be expected with such a large mem-

ry set). However, it is much more feasible to obtain thousands of re-

all trials across subjects . Thus, some analyses which are impractical —or

hat would be data starved —within subjects, might become feasible if

cross-subject models are leveraged. Moreover, a single well-powered

raining data set could potentially be applied to many distinct test

ets. Finally, it is also notable that here, we only aligned across-subject

ata in anatomical space. Additional gains in across-subject transfer

ay well be realized by aligning data in a common high-dimensional

unctional space ( Chen et al., 2015 ; Haxby et al., 2011 ; Haxby et al.,

020 ). 
12 
. Conclusions 

To summarize, we used inverted semantic encoding models applied

o fMRI data to reconstruct multidimensional content in natural scene

mages as they were viewed and recalled from memory. We found that

isual and lateral parietal cortices supported successful reconstructions

oth when viewing and recalling images. However, whereas lateral pari-

tal reconstructions were relatively insensitive to whether images were

iewed or recalled from memory, visual cortical reconstructions were

arkedly lower for recalled versus viewed images. Additionally, by ap-

lying natural language processing methods to behavioral measures of

emory recall, we show that fMRI-based reconstructions of recalled

ontent matched subjects’ verbal recall and that fMRI-based reconstruc-

ions even reflected idiosyncratic qualities of subjects’ recall. Finally, we

how that semantic encoding models reliably transferred across individ-

als, allowing for successful reconstruction of a given subject’s memory

sing encoding models trained on entirely different individuals. Collec-

ively, these findings provide important evidence characterizing multi-

imensional memory representations and linking their neural and be-

avioral expressions. 
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