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Human neuroimaging studies have shown that the contents of episodic memories are represented in distributed
patterns of neural activity. However, these studies have mostly been limited to decoding simple, unidimensional
properties of stimuli. Semantic encoding models, in contrast, offer a means for characterizing the rich, multidi-
mensional information that comprises episodic memories. Here, we extensively sampled four human fMRI subjects
to build semantic encoding models and then applied these models to reconstruct content from natural scene im-
ages as they were viewed and recalled from memory. First, we found that multidimensional semantic information
was successfully reconstructed from activity patterns across visual and lateral parietal cortices, both when view-
ing scenes and when recalling them from memory. Second, whereas visual cortical reconstructions were much
more accurate when images were viewed versus recalled from memory, lateral parietal reconstructions were com-
parably accurate across visual perception and memory. Third, by applying natural language processing methods
to verbal recall data, we showed that fMRI-based reconstructions reliably matched subjects’ verbal descriptions
of their memories. In fact, reconstructions from ventral temporal cortex more closely matched subjects’ own
verbal recall than other subjects’ verbal recall of the same images. Fourth, encoding models reliably transferred
across subjects: memories were successfully reconstructed using encoding models trained on data from entirely
independent subjects. Together, these findings provide evidence for successful reconstructions of multidimen-
sional and idiosyncratic memory representations and highlight the differential sensitivity of visual cortical and
lateral parietal regions to information derived from the external visual environment versus internally-generated
memories.

1. Introduction mans actually use to describe memories (Chen et al., 2017; Gilmore et al.,

2021; Heusser et al., 2021). Thus, an important challenge for the field is

Neuroimaging studies of human episodic memory have found that
the contents of memory retrieval are reflected in broadly distributed
patterns of neural activity (Danker and Anderson 2010; Rissman and
Wagner 2012). While initial fMRI decoding studies of memory focused
on relatively coarse information such as the visual category to which
a stimulus belongs (Kuhl et al.,, 2011; Polyn et al., 2005), more re-
cent studies have demonstrated item- or event-specific representations
(Favila et al., 2018; Lee et al., 2019; St-Laurent et al., 2015; Xiao et al.,
2017). However, these studies have overwhelmingly focused on decod-
ing simple, unidimensional, and objective properties of stimuli. In con-
trast, real-world episodic memories are complex, multidimensional, and
subjective (Cooper and Ritchey 2019; Richter et al., 2016). Notably, this
limitation is often paralleled in behavioral measures of memory where
simple, categorical expressions of retrieval success or accuracy are more
common than the kinds of complex and idiosyncratic descriptions hu-
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to develop neuroimaging measures that capture the richness and com-
plexity of episodic memory retrieval and to directly align these measures
with behavioral expressions of memory that have similar richness and
complexity.

A handful of recent fMRI studies have moved closer toward captur-
ing the richness of memories by using voxel-wise encoding/decoding
models (Kay et al., 2008; Naselaris et al., 2011) to map fMRI activity
patterns to multidimensional measures of memory content. For exam-
ple, Naselaris et al. (2015) demonstrated that low-level visual features
can be successfully reconstructed during mental imagery. Specifically,
they extracted low-level visual features from complex natural images
and trained algorithms to predict these features from fMRI activity pat-
terns elicited during visual perception. This mapping was then used to
predict features of independent natural images based on activity pat-
terns evoked during mental imagery. Using a similar approach applied

Received 6 January 2023; Received in revised form 6 June 2023; Accepted 8 June 2023

Available online 14 June 2023.

1053-8119/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)


https://doi.org/10.1016/j.neuroimage.2023.120222
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2023.120222&domain=pdf
mailto:bkuhl@uoregon.edu
https://doi.org/10.1016/j.neuroimage.2023.120222
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Wang, H. Lee and B.A. Kuhl

to higher-level visual information, Lee and Kuhl (2016) mapped distinct
face components to patterns of fMRI activity and then used these map-
pings to reconstruct faces held in working memory. In another study,
Bone et al. (2020) applied deep convolutional neural networks to com-
plex natural images in order to extract content information and map that
information to patterns of fMRI activity. They demonstrated that, during
memory recall, fMRI activity patterns reflect content information across
multiple levels: from low-level visual information to high-level seman-
tic concepts. Collectively, these studies provide important evidence that
multidimensional content representations can be mapped to patterns of
neural activity evoked during memory retrieval. Notably, however, none
of these studies used behavioral measures of memory that matched the
richness of the neural measures.

Complementing the studies described above, other fMRI studies have
embraced more complex behavioral measures of verbal recall (Chen et al.,
2017; Gilmore et al., 2021; Heusser et al., 2021; Nguyen et al.,
2019). For example, Chen et al. (2017) and Nguyen et al. (2019) ap-
plied latent semantic analysis (LSA) to verbal recall of movies and
Heusser et al. (2021) used topic models to measure changes in verbal re-
call content over time. Each of these studies found that subject-specific
measures of verbal recall content were related to measures of fMRI activ-
ity. For example, in Chen et al. (2017) and Nguyen et al. (2019), subjects
with more similar behavioral expressions of recall—or more similar in-
terpretations of the stimuli—showed greater fMRI pattern similarity. In
Heusser et al. (2021), the specific time course of content changes during
verbal recall was predicted by changes in fMRI activity. These studies
strongly attest to the feasibility and value of measuring subject-specific
verbal recall and relating these behavioral expressions to patterns of
neural activity. However, it is important to note that these studies did
not directly measure content information within fMRI data and, there-
fore, they did not directly align the content of behavioral recall with the
content of fMRI activity patterns.

To the extent that multidimensional memory representations are
captured by patterns of neural activity, an additional question is how
these representations are distributed across cortical areas. Traditionally,
memory-based content representations have been measured within (or
decoded from) sensory cortical regions involved during initial percep-
tual experience (Danker and Anderson 2010). In particular, much of this
work has focused on ventral temporal cortical areas which represent
high-level visual category information (Kuhl et al., 2011; Polyn et al.,
2005). However, there is now substantial and accumulating evidence
that the contents of memory retrieval are also robustly reflected in
lateral parietal cortex (LPC) (Kuhl and Chun 2014; St-Laurent et al.,
2015; Xiao et al., 2017). Much of this work has focused on the angu-
lar gyrus, which is not only a core component of the episodic memory
network (Gilmore et al., 2015; Rugg and Vilberg 2013) but is heavily
involved in semantic processing (Humphreys et al., 2021). Indeed, sev-
eral recent findings specifically suggest that LPC—and angular gyrus,
in particular—contains the kinds of rich, multidimensional informa-
tion that is critical for episodic remembering (Bonnici et al., 2016;
Cowen et al., 2014; Favila et al., 2018; Huth et al., 2016; Lee et al.,
2019; Lee and Kuhl 2016; Yu and Shim 2017). Interestingly, there is
also emerging evidence for a potential dissociation in content repre-
sentations across LPC and sensory cortices. Namely, whereas content
representations in sensory cortex are generally weaker during memory
retrieval compared to perception, content representations in LPC may
be as strong or stronger during memory retrieval compared to perception
(Favila et al., 2018, 2020; Long and Kuhl 2021; Xiao et al., 2017). Thus,
understanding how memory representations are distributed across LPC
and ventral temporal cortical areas remains an important objective with
implications for theories of memory (Favila et al., 2020; Rugg and King
2018).

Here, we sought to bridge neuroimaging methods for measuring
multidimensional content representations with behavioral methods for
measuring complex, subjective, and idiosyncratic expressions of mem-
ory. To this end, we used semantic encoding models (Kay et al., 2008)
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and an extensive-sampling fMRI design (thousands of trials per subject)
to map multidimensional semantic information from natural scene im-
ages to fMRI activity patterns. We then inverted these encoding models
(Ester et al., 2015; Kok et al., 2020; Sprague et al., 2016) to reconstruct
semantic information as subjects viewed and recalled images from mem-
ory. These fMRI-based content reconstructions were directly compared
to subjects’ verbal recall of the scenes using natural language process-
ing methods. This allowed us to test not only whether fMRI-based re-
constructions captured the objective content within scene images, but
whether reconstructions matched subjective—and potentially idiosyn-
cratic (subject-specific)—details of how scenes were remembered. Ad-
ditionally, by comparing reconstructions generated from different re-
gions of visual cortex and LPC, we tested whether these regions dif-
ferentially expressed content information during image viewing ver-
sus image recall. Finally, we tested whether semantic encoding models
successfully generalized across subjects—a question that has important
implications for leveraging data-rich models from extensively-sampled
subjects.

2. Materials and methods
2.1. Subjects

Nineteen experimental sessions were collected from four human sub-
jects (two females, age 23-30 years) from the University of Oregon com-
munity. Three subjects completed five sessions each; one subject only
completed four sessions due to unavailability for a 5th session. The sam-
ple size was modeled after Naselaris et al. (2015), which used a simi-
lar encoding model procedure for memory-based reconstructions with a
sample size of 3 subjects and 5-6 sessions per subject. Despite our small
sample size, each subject was sampled extensively across a large number
of stimuli, a procedure which may have distinct advantages compared
to sampling many individuals across a more limited number of stim-
uli (Naselaris et al., 2021). All subjects were right-handed and reported
normal or corrected-to-normal vision. Informed consent was obtained
in accordance with procedures approved by the University of Oregon
Institutional Review Board.

2.2. Stimuli

Two sets of image stimuli were prepared: one for use in a recognition
memory task and one for use in a recall memory task. The recognition set
contained a total of 5000 complex scene images, which were selected
from the Microsoft COCO dataset (http://cocodataset.org/, Lin et al.,
2015). These images depict complex everyday scenes of common ob-
jects from 91 categories in their natural context. Each image in the
dataset is annotated with five written descriptions from independent
human subjects. These descriptions capture the main content of the im-
ages and were used, in the present study, as information channels for
the inverted encoding model. For each subject and each session, 680
images were randomly selected (without replacement) from the recog-
nition set. Of these, 600 were studied prior to the fMRI session and
served as ‘old’ items in the recognition test. The remaining 80 images
served as novel foils (‘new’ items) in the recognition test. The recall set
consisted of a total of 100 images, also drawn from the Microsoft COCO
dataset. Each image was randomly paired with a texture (taken from the
internet), creating a set of paired associates. The textures served as cues
during the cued recall task (described below). For each session, 20 of
the paired associates were studied and tested. The same 20 pairs were
used in each session for each subject in order to facilitate across-subject
analyses.

2.3. Experimental design and procedures

Overview of paradigm. Each session of the experiment consisted of two
separate parts which were conducted across consecutive days (Fig. 1A).
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Fig. 1. Experimental procedure. A. Overview of experimental phases. Each subject completed 4 to 5 experimental sessions. Each experimental session involved two
consecutive days of tasks. On Day 1, subjects learned 20 associations between cues (textures) and associates (scenes) via a paired associate training procedure and
were also familiarized with 600 additional scene images (image familiarization). No fMRI scanning was conducted on Day 1. On Day 2, subjects completed additional
paired associate training and image familiarization before entering the scanner. During scanning, subjects completed a covert cued-recall test of the cue-associate
pairs followed by a recognition memory test. After exiting the scanner, subjects completed an overt cued-recall test for the cue-associate pairs. B. The paired associate
training included three phases: study, vividness test, and forced choice test. During study, subjects were shown textures followed by scenes and attempted to learn
these associations. During the vividness test, subjects were shown textures and then indicated the vividness with which they were able to recall the corresponding
scene. The correct scene was then shown as feedback. During the forced choice test, subjects were shown a texture followed by four previously-studied scenes and
were asked to select the corresponding scene. C. In the scanned (covert) cued-recall phase, subjects were shown textures and rated the vividness with which they
could recall the corresponding scene (as in the vividness test, but without feedback). D. In the scanned recognition memory test, subjects made old/new judgements
for scenes (that did not include the scenes from the paired associate training). The sole purpose of the recognition memory test was to train the semantic encoding

Old/New? Old/New? Old/New? Type response

models. E. In the final (overt) recall test, subjects were shown textures and typed a sentence to describe the content of the corresponding scene.

The two-day protocol was intended to minimize fatigue given the overall
length of the tasks. On Day 1 of each session, subjects were overtrained
on 20 paired associates (textures + scene images) and were familiar-
ized with a separate 600 scene images (from the recognition set). On
Day 2 of each session, subjects first completed additional training on
the paired associates from Day 1 and additional familiarization with
images from the recognition set. Then, during fMRI scanning subjects
completed two phases: (1) a covert cued recall phase in which the 20
textures were repeatedly used to test memory for the associated scenes,
and (2) a recognition memory phase which included the 600 familiar-
ized images + 80 lures. The rationale for conducting the cued recall
phase before the recognition memory phase was to minimize interfer-
ence/forgetting during the cued recall phase. Finally, subjects exited
the scanner and completed an overt (verbal) cued recall test for the 20
paired associates. This two-day procedure constituted a single session
and each subject completed 4-5 sessions. In order to minimize across-
session memory interference, there was a delay of at least 7 days be-
tween sessions, for each subject. Each subject completed all of their ses-
sions within a 2-month window.

Paired associate training. Paired associate training was conducted at
the beginning of Day 1 (4-5 rounds) and the beginning of Day 2 (1
round). Each round of paired associate training consisted of three dis-
tinct phases in the following sequence: study, vividness test, study, vivid-
ness test, forced choice associative memory test. In the study phases,
subjects saw and deliberately encoded each of the 20 paired associates,
one pair at a time. On each trial, the cue (texture) was first presented
for 1 s, followed by a fixation cross for 0.5 s, and then the target im-
age (scene) for 2 s. Another fixation cross was presented for 1 s at the

end of each trial (before the start of the next trial). In the vividness test
phases, each cue was presented for 1 s followed by a 3-point vividness
scale (“1 2 3”) and subjects reported, via button press, the vividness with
which they could recall the target image (1-Can’t remember, 2-Remember,
and 3-Vividly remember). The rationale for using a vividness report was
that (1) it encouraged participants to recall the images in detail, (2) it
provided a measure of task vigilance/compliance, and (3) it did not ex-
plicitly orient subjects to specific semantic dimensions. The vividness
report was self-paced. After responding, feedback was given by present-
ing the target image alone on the screen for 1.5 s. A fixation cross was
presented for 0.5 s in between trials. In the forced choice associative
memory test, a cue image was first presented for 1 s and then, after a
fixation cross (0.5 s), four scene images appeared on the screen. The
four images included the target (correct) scene along with three scenes
randomly selected from the remaining 19 scenes in the set of paired as-
sociates studied in the current session. Subjects were instructed to select
the scene image that had been paired with the cue by pressing one of
four keys. There was no time limit to respond. After subjects made a
selection, feedback was provided. If the correct image was selected, a
green fixation cross was presented (0.5 s) followed by the correct image
presented in the center of the screen (1 s). If an incorrect image was se-
lected, a red fixation cross was presented (0.5 s) followed by the correct
image (1 s) presented in the center of the screen. Finally, a black fixation
cross was presented for 1 s (until the start of the next trial). For each
session, subjects were required to reach at least 95% accuracy for two
consecutive rounds on Day 1 before proceeding to the Image Familiar-
ization Phase. Using this performance criterion, all subjects completed
5 paired associate training rounds on Day 1 for each session, with the
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exception of one subject that reached the criterion by the 4th round for
one of the sessions.

Image Familiarization. For each session, Image Familiarization was
conducted on Day 1 and Day 2, immediately after the paired asso-
ciate training rounds. During each familiarization phase subjects saw
all 600 scene images presented in the center of the screen, one at a
time and in random order, and distributed across five blocks (120 im-
ages/block). Subjects were instructed to try their best to remember each
image for a later memory test (the recognition memory test). No be-
havioral responses were made. On Day 1, each image was presented
for 1 s with a 0.5 s fixation cross in between trials. On Day 2, each
image was presented for 0.6 s with a 0.4 s fixation point in between
trials.

Scanned Cued Recall. For each session, subjects completed two fMRI
runs of a covert cued recall task (Fig. 1B, left), each lasting 6 min and
16 s. As during the paired associate training rounds, subjects were
shown cues (textures) and indicated the vividness with which they could
recall the corresponding scene image using a 3-point scale. Each run
consisted of 40 recall trials (2 trials per association per run), with the or-
der of trials in each run pseudorandomized with the constraint that the
same association was not tested consecutively. Every trial started with a
cue image centrally presented over a white background for 0.5 s. Next,
a question mark appeared in the center of the screen (3.5 s), prompting
subjects to make their vividness response using a button box. Finally, a
fixation cross was presented either for 4 s (75% of trials) or 8 s (25% of
trials).

Scanned Recognition Memory Test. Following the cued recall task, sub-
jects completed the recognition memory test (Fig. 1B) which consisted
of eight runs, each lasting 6 min and 20 s. Each run contained 75 old
images and 10 novel images presented in random order, for a total
of 680 images across the 8 runs. Each trial began with the presenta-
tion of a scene in the center of the screen (1 s). Next, a question mark
(3 s) prompted subjects to make an old/new decision by pressing one
of two keys on a button box. After a small number of the recognition
trials (6/85), a fixation cross was presented for 4 s. The rationale for
including a disproportionate number of old images (600 out of 680)
was because fMRI data from the recognition memory test was used to
train encoding models applied to the cued recall task and we sought
to increase the extent to which these models were trained on ‘memory
data’ (old trials). Specifically, recent evidence indicates systematic dif-
ferences in the spatial activity patterns associated with memory-based
content representations compared to perception-based content represen-
tations (Favila et al., 2020). Thus, our intuition—though not a point we
directly tested—was that transfer from the recognition to recall trials
might benefit from the recognition trials having a high percentage of
old trials. Additionally, the recognition memory test served as a cover
task to help keep subjects engaged while viewing hundreds of images per
session.

Post-scan Cued Recall. After subjects exited the scanner, they com-
pleted a final cued recall test (Fig. 1B). However, in contrast to the prior
cued recall tests which recorded covert (vividness) memory judgments,
here subjects were asked to explicitly describe their memories. On each
trial, subjects were shown a cue (texture) and were asked to type a sen-
tence to describe the content of the associated scene image. Specifically,
the instructions asked subjects to “write a complete but simple sentence”
that should “include adjectives if possible, describe the main characters,
the setting, or the relation of the objects in the image, and try to be con-
cise”. After subjects typed their response on the computer screen, they
pressed enter to advance to the next trial. No time limit was given and
each of the 20 associations from the current session was tested once, in
random order.

2.4. fMRI data acquisition

fMRI scanning was conducted on a Siemens 3 T Skyra scanner at the
Robert and Beverly Lewis Center for NeuroImaging at the University of
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Oregon. Before the functional imaging, a whole-brain high-resolution
anatomical image was collected for each subject and each session us-
ing a T1-weighted protocol (grid size 256 x 256; 176 sagittal slices;
voxel size 1 x 1 X 1 mm). Whole-brain functional images were collected
using a T2*-weighted multi-band accelerated EPI sequence (TR = 2 s;
TE = 25 ms; flip angle = 90° 72 horizontal slices; grid size 104 x 104;
voxel size 2 X 2 x 2 mm). Each cued recall scan consisted of 188 vol-
umes. Each recognition memory test scan consisted of 190 volumes.

2.5. fMRI data preprocessing

MRI data were first converted to Brain Imaging Data Structure
(BIDS) format using in-house scripts. MRIQC v0.15.1 (Esteban et al.,
2017) was used for preliminary data quality assessment. We applied
a threshold that no more than 20% of TRs in any scan run could
exceed a framewise displacement of 0.3 mm; however, no scan runs
were excluded using this threshold. Preprocessing was performed
using FMRIPrep v1.5.4 (RRID:SCR_016216) (Esteban et al., 2019), a
Nipype (RRID:SCR_002502) based tool, with the default processing
steps. Each structural image was corrected for intensity non-uniformity
and skull-stripped. Brain surfaces were reconstructed using recon-all
from FreeSurfer v6.0.1. Spatial normalization to the ICBM 152 Non-
linear Asymmetrical template version 2009c was performed through
nonlinear registration with the antsRegistration tool of ANTs v2.1.0,
using brain-extracted versions of both T1w volume and template. Brain
tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM)
and gray-matter (GM) was performed on the brain-extracted T1w using
FAST (FSL v5.0.9).

Functional data were slice time corrected, motion corrected, and cor-
rected for field distortion. This was followed by co-registration to the
corresponding T1w using boundary-based registration with six degrees
of freedom using bbregister (FreeSurfer v6.0.1). Motion correcting trans-
formations, BOLD-to-T1w transformation and T1w-to-template (MNI)
warp were concatenated and applied in a single step using antsApply-
Transforms (ANTs v2.1.0) using Lanczos interpolation. We then applied
a high pass filter using a cutoff period of 100 s. Finally, the prepro-
cessed fMRI data were smoothed by a 1.6 mm full-width-half-maximum
Gaussian kernel with FSL’s SUSAN (Smoothing over Univalue Segment
Assimilating Nucleus) (Smith and Brady 1997). Grand-mean intensity
normalization of each functional image volume was performed by a sin-
gle multiplicative factor. Confounding regressors including framewise
displacement (FD), global signal, white matter, and cerebrospinal fluid
signals were generated for each volume. Within-subject reconstructions
were conducted in subjects’ native EPI space, and across-subject recon-
structions were conducted in the standard space.

2.6. Regions of interest

Regions of interest (ROIs) included four subregions of the posterior
lateral parietal cortex (LPC), the ventral temporal cortex (VTC), and the
occipital temporal cortex (OTC) (Fig. 4A). Post-hoc analyses for addi-
tional brain regions, including two control ROIs (primary auditory cor-
tex, primary motor cortex) are reported in Table S1. ROIs were defined
using FreeSurfer’s Destrieux atlas (the following label numbers refer to
Simple_surface_labels2009.txt). The subregions of LPC consisted of the
angular gyrus (ANG, #25), supramarginal gyrus (SMG, #26), superior
parietal lobule (SPL, #27), and intraparietal sulcus (IPS, #57). The VTC
ROI was comprised of regions 21, 23, 51, 52, 61, and 62. The OTC
ROI was comprised of regions 2, 19, 43, 58, and 60. The ROIs were
co-registered to the functional images and further masked by subject-
specific whole-brain masks generated from functional images to exclude
areas where signal dropout occurred. All ROIs contained brain regions
from both hemispheres (mean number of voxels for each ROI: 1816 in
ANG; 1942 in SMG; 1594 in SPL; 1318 in IPS; 4459 in VTC; 3854 in
OTC).
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2.7. Single-item response estimation

For each session, separate general linear models (GLM) were cre-
ated for each of the 20 images during the cued recall task and each of
the 680 images during the recognition memory test. A least-square sin-
gle method was used for each item, where the given item was modeled
with a single regressor and all the remaining items were modeled with
another regressor. The presentation of each stimulus was modeled as an
impulse and convolved with a canonical hemodynamic response func-
tion (double gamma). The GLM included head-motion parameters (six
rotation and translation head movement estimates) and nuisance regres-
sors marking outlier TRs (FD > 0.3 mm from previous TR) as confound-
ing regressors. The t-statistic values associated with each image were
used in the semantic encoding model to increase reliability by noise
normalization (Walther et al., 2016).

2.8. Image content reconstruction

To represent the content of each scene image, we used the Word2vec
embedding algorithm. This algorithm transforms single words into 300-
dimensional vectors (word embeddings). Similarities/distances between
these vectors reflect the similarity of the corresponding words. In our
analysis, we took advantage of the annotation captions (five captions
for each image) from the COCO dataset. After a standard preprocess-
ing procedure that included filtering of stop words and tokenization,
we obtained the word embeddings for the critical words in the annota-
tion captions. Notably, no corrections were applied for negations given
their very low frequency. We calculated the mean vector, across the
five captions, to represent the content in each image (Fig. 2A). We then
applied principal component analysis (PCA) on the entire pool of 300-
dimensional word embeddings for the 5100 images (i.e., the full set of
recognition + recall images). The first 30 components, which explained
68.59% of the total variance (Fig. S1), were used as information chan-
nels in the semantic encoding model. We refer to these 30 components
as semantic component scores. The goal of reconstruction analyses was to
accurately predict the semantic component scores.

Reconstructions of semantic component scores were generated us-
ing a cross-validation approach. fMRI activation patterns evoked during
the recognition trials for ‘old’ images were used as training patterns to
estimate the relationship between fMRI activity patterns and semantic
component scores (Fig. 2B). Data from ‘new’ trials during the recogni-
tion memory test were not used for training (or testing) of the encoding
models. We modeled the response in each voxel as a weighted sum of
the information channels (i.e., the 30 semantic components):

B, =W(,

where B; (n images x m voxels) is the activation patterns of voxels
(t maps) during the recognition memory test, C; (n images x k com-
ponents) is the modeled response of each component, or information
channel, on each trained image, and W (k components X m voxels) is a
weight matrix quantifying the contribution of each information channel
to each voxel (Fig. 2B). We can solve for W using the following ordinary
least-squares linear regression:

W =B,cT(c,cT)!

Given the estimated weights within an ROI (W) and a novel pat-
tern of activation (B,) from the recognition trials (recognition-based
reconstruction) or the recall trials (recall-based reconstruction), we can
compute an estimate of the semantic component scores by inverting the
model (Fig. 2C):

¢, = (WTW) "W,
Recognition-based reconstruction. Separately for each subject, N-fold
cross-validation was performed on recognition data where N equals the

number of scanning runs pooled across all of the sessions that each
subject completed (i.e., 40 runs for the three subjects that completed
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5 sessions each and 32 runs for the remaining subject that completed
4 sessions). For each fold, the activation patterns from N-1 runs (i.e.,
39 or 31 runs) were used as training patterns and those of the remain-
ing run served as the testing set (i.e., the trials for which the semantic
component scores were predicted). In this manner, all trials iteratively
contributed to both model training and model testing.

Recall-based reconstruction. To predict semantic component scores
during recall trials, activation patterns from recognition runs were used
as training data and the estimated weights based on the recognition tri-
als (training data) were then applied to the recall trials (testing data)
to predict the semantic component scores for each of the recalled im-
ages. Recall-based reconstructions were performed in two ways: within-
subjects and across-subjects. For within-subject reconstructions, all of
the recognition runs across all sessions for a given subject were used as
the training data and the testing data were all of the recall runs across
all sessions for that same subject. For across-subject reconstructions, all
of the recognition runs across all sessions from N-1 subjects were used
as the training data and the testing data were all of the recall runs across
all sessions from the held-out subject.

2.9. Reconstruction accuracy

For all reconstruction analyses, accuracy was based on Fisher-
transformed Pearson correlations between predicted (reconstructed)
and ‘actual’ semantic component scores. ‘Actual’ semantic component
scores were either based on COCO annotations (which were derived
from an independent set of subjects) or from subjects’ verbal recall re-
sponses (which were collected in the final cued recall test, after fMRI
scanning). Unless otherwise noted, successful reconstruction accuracy
was defined as greater within-item correlations than across-item correla-
tions (Fig. 2D). Within-item correlations refer to correlations between
reconstructed and actual semantic component scores corresponding to
the same image. Across-item correlations refer to the mean of corre-
lations between reconstructed and actual semantic component scores
corresponding to different images [e.g., r(reconstructed scores for im-
age 1, actual scores for image 2)]. Across-item correlations were always
restricted to images from the same fMRI session. Additionally, within-
item correlations for recognition-based reconstructions were only com-
pared against across-item correlations for other recognition-based re-
constructions; likewise, within-item correlations for recall-based recon-
structions were only compared against across-item correlations for other
recall-based reconstructions. Group-level results were obtained by first
averaging correlations within sessions for each subject and then across
sessions and subjects. In addition to correlation values, for each ROI we
also report the mean percentile rank of reconstructions (i.e., the rank
of the within-item correlation among the distribution of all across-item
correlations). Note: the mean rank values were not used for statistical
analyses; rather, they are included to provide a more intuitive measure
of reconstruction accuracy.

2.10. Statistical analysis

Unless otherwise stated, mixed-effects models were used to test
the reconstruction accuracy of correlation difference measures. Linear
mixed-effects models were implemented with Ime4 in R 3.6.3, fitted us-
ing restricted maximum likelihood. To determine whether within-item
correlations differed from across-item correlations, we used the likeli-
hood ratio test to compare models with (full model) and without (null
model) the predictor of interest (i.e., correlation type: within-item corre-
lation or across-item correlation). Subject and session numbers were in-
cluded as random factors. For statistical tests of reconstruction accuracy
within individual ROIs, uncorrected p values are reported. In tests that
compared reconstruction accuracies across ROIs or conditions, mixed-
effects models were used with the subject number and session number
included as random factors.
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Fig. 2. Schematic overview of the semantic content reconstruction analysis. A. Generating semantic component scores. Annotations from the COCO image dataset
were used as semantic descriptions of the images. After filtering out the stop words, the captions were transformed into 300-dimensional vectors using the Word2Vec
embedding method. PCA was run on all of the 5100 candidate images, and the first 30 principle components (hereinafter, semantic components) were extracted so
that the content of each image could be expressed as a weighted sum of these components. B. Training the encoding model. Linear regression was used to estimate a
model that learned the mapping between the semantic component scores of the trained images (i.e., the training set) and the fMRI activation patterns they evoked.
C. Testing the encoding model. The regression weights obtained from the training set were applied to an independent set of images (i.e., the testing set) to predict
semantic component scores. Encoding models were tested using cued recall trials (shown) or recognition trials (not shown). D. Assessing reconstruction accuracy.
The accuracy of reconstruction for each image was determined by computing the Pearson correlations between the predicted semantic component scores and the
actual semantic component scores. Actual semantic component scores were either based on the COCO dataset captions (left side of boxes) or the verbal recall
responses subjects generated in the final cued-recall test (right side of boxes). Correlations were separately computed for ‘matching’ images (within-item similarity)

and non-matching images (across-item similarity). Reconstructions were considered accurate if within-item similarity was higher than across-item similarity.

3. Results
3.1. Behavioral performance

Group-level results were obtained by first averaging data within ses-
sions for each subject and then across sessions and subjects. On Day 1 of
each session, subjects studied 20 paired associates (textures with scenes)
across 4-5 rounds. For each round, memory was tested via cued recall
and forced-choice associative memory tasks. In the cued recall tasks,
subjects reported how vividly they could recall the target image on a
3-point scale. The mean percentage of “Vividly remember” responses
(the highest rating) was 49.74% + 22.96% (SD) in round 1, 93.16% +
10.23% in round 2, 99.34% + 1.83% in round 3, 99.74% + 0.79% in
round 4, and 100% =+ 0.00% in round 5 (Fig. 3A). In the forced-choice
associative memory test, subjects were asked to select the target im-
age for each cue from a set of three image choices. Performance was
high across all rounds (Round 1: 97.89% + 4.19%; Round 2: 98.95% +
2.09%; Round 3: 98.68% =+ 2.27%; Round 4: 98.68% + 2.81%; Round
5: 97.81% + 3.15%). Critically, performance remained high at Day 2
as evidenced by the rate of “Vividly remember” responses during the
cued recall tasks (pre-scan cued recall: 98.16% + 3.89%; scanned cued
recall task: 98.55% + 6.00%; Fig. 3A) and performance on the forced-
choice associate memory test, which occurred prior to scanning (98.95%

+ 2.09%; Fig. 3A). Note: given the extremely high success rate of recall,
fMRI analyses comparing successful vs. failed recall trials were not fea-
sible.

After exiting the scanner, subjects completed a final post-scan cued
recall task during which they generated a sentence to describe the con-
tent in each target image. These subject-specific recall-based descrip-
tions were transformed to 300 dimensional vectors (word embeddings)
using Word2Vec. The COCO annotations for each of these images were
also transformed to word embeddings using Word2Vec. We then calcu-
lated the Pearson correlations between the word embeddings from sub-
jects’ verbal recall and those from the independent COCO annotations.
As shown in Fig. 3B, each subject exhibited markedly higher within-
item correlations (i.e., correlations between verbal recall vectors and
COCO annotation vectors corresponding to the same image) than across-
item correlations (i.e., correlations between recall vectors and annota-
tion vectors corresponding to different images). These results confirm
that subjects were able to accurately describe images from memory and
also validate our approach of characterizing verbal recall through word
embeddings.

For the recognition memory test conducted during scanning, mean
recognition sensitivity (d’) across sessions and subjects was 1.98 + 0.52.
The mean hit rate for studied images was 84.63% + 11.51%, and the
mean correct rejection rate for new images was 76.97% + 12.48%. A
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Fig. 3. Behavioral performance across the entire experimental procedure. A. Forced-choice test accuracy was measured during the paired associate training rounds
on Days 1 and 2. The first five rounds (r1-r5) were completed during Day 1. The 6th round (r6) was completed during Day 2 (just prior to fMRI scanning). Chance
accuracy = 25%. B. Vividness ratings were made during the first five paired associate training rounds on Day 1 (r1-r5), during the 6th paired associate training round
on Day 2 (r6), and during the covert cued recall test during fMRI scanning on Day 2 (scan). Ratings were rescaled from 1, 2, 3 to 0, 0.5, 1.0 with 0 corresponding to
the lowest vividness rating and 1.0 to the highest vividness rating. For A and B, data are represented by boxplots with dots representing data from individual sessions
with each subject represented by a different shape. Note: for many of the rounds performance was at ceiling and boxplots are therefore compressed. C. Verbal recall
performance from the overt cued recall test following scanning on Day 2. For each subject (Sub. 1-4) and each recalled image, Pearson correlations were computed
between the 30 semantic components generated from subjects’ verbal responses and semantic components generated from the independent COCO annotations of (i)
the same images (within-item similarity) or (ii) other images from the recall set (across-item similarity). For within-item similarity, each dot represents the within-
item correlation for a single recall trial to its corresponding COCO annotations. For across-item similarity, each dot represents the mean z-transformed correlation

between a single recall trial and all non-corresponding COCO annotations.

mixed effects model including subject and session numbers as random
factors showed that the hit rate was significantly higher than the false
alarm rate ()(21 = 89.96, p < 0.0001, g = 0.616, SE = 0.030).

3.2. Reconstruction of content from viewed images

For fMRI analyses, we first tested for successful reconstruction of im-
age content from activity patterns evoked in visual and lateral parietal
cortices during the recognition memory task (when images were visu-
ally presented on the screen). Image content was defined by 30 semantic
component scores derived from the 300-dimensional Word2Vec vectors
from the COCO annotations (Fig. 2). The 30 semantic components ex-
plained 68.59% of the variance in COCO annotations for the images
used in the study. As with the behavioral analyses above, we assessed
reconstruction accuracy by comparing within-item vs. across-item simi-
larity. Here, however, within-item similarity was defined as the Fisher-
transformed Pearson correlation between the reconstructed component
scores for a given image (as predicted from the inverted fMRI encod-
ing model) and the ‘actual’ semantic component scores for that image
(derived from COCO annotations). Across-item similarity was defined
as the mean Fisher-transformed Pearson correlation between predicted
component scores for a given image and actual component scores for
different images (from the same session). Reconstruction of content in-
formation was determined to be successful if within-item similarity was
greater than across-item similarity, as determined by mixed-effects lin-
ear models which included subject and session numbers as random fac-
tors. Consistent with our previous studies (Cowen et al., 2014; Lee and
Kuhl 2016), robust reconstruction accuracies were obtained from vi-
sual regions (VTC: rank = 64.52%; ;(12 =3024.1, p < 0.0001, p = 0.136,
SE = 0.002; OTC: rank = 66.39%; ;(12 = 3785.6, p < 0.0001, g = 0.146,
SE = 0.002) as well as ANG and other lateral parietal ROIs (ANG:
rank = 57.15%; )(12 =754.4, f =0.063, SE = 0.002; SMG: rank = 54.31%;
x}=2718, p = 0.040, SE = 0.002; SPL: rank = 56.58%; y? = 624.0,
p = 0.059, SE = 0.002; IPS: rank = 57.23%; x> =774.5, f = 0.066,
SE = 0.002; p values < 0.0001) (Fig. 4A,B). However, reconstruction
accuracies sharply varied across ROIs (main effect of ROI from repeated-
measures ANOVA: F5 g = 350.69, p < 0.0001, ;12 = 0.95), with higher
accuracies in the visual ROIs compared to the parietal ROIs (p’s <
0.0001 for all paired-samples t-tests comparing the VTC and OTC ROIs
to each of the lateral parietal ROIs). For results from additional brain
regions—including prefrontal cortex, lateral temporal cortex, primary
motor cortex, and primary auditory cortex—see Table S1.

3.3. Reconstruction of image content from cued recall task

Next, we extended our method to test for content reconstruction for
images retrieved from memory during the cued recall task. Critically,
and in contrast to recognition-based reconstructions for which the to-be-
reconstructed image was visually present, here the to-be-reconstructed
image was visually absent (subjects were only shown the texture cues)
thus requiring top-down retrieval of the target image. For this analy-
sis, we trained the semantic encoding model with ‘old’ images from the
recognition set (exploiting the large number of recognition trials) but
tested it on images from the cued recall task. As with the recognition-
based reconstructions, evidence for successful recall-based reconstruc-
tions was obtained if within-item similarity (correlations between the
semantic component scores predicted from the inverted encoding model
and the ‘target’ semantic component scores) were reliably higher than
across-item correlations. As described in the following sections, we used
several approaches for defining the ‘target’ semantic component scores.

As a first step, we defined target semantic component scores based
on the COCO annotations (as in the preceding section which tested for
reconstruction accuracy during the recognition memory task). Success-
ful recall-based content reconstruction was observed across each of the
visual and parietal regions (VTC: rank = 60.08%; ;(Iz = 83.9,p < 0.0001,
f = 0.083, SE = 0.009; OTC: rank = 55.24%; ;(12 =24.6, p < 0.0001,
p = 0.043, SE = 0.009; ANG: rank = 55.29%; x> = 26.6, p < 0.0001,
f = 0.049, SE = 0.009; SMG: rank = 55.22%j; ;(15 =26.0, p = 0.0001,
p = 0.048, SE = 0.009; SPL: rank = 56.12%; y> =24.5, p < 0.0001,
p = 0.047, SE = 0.009; IPS: rank = 57.08%; ;(% =32.6, p < 0.0001,
# = 0.056, SE = 0.010; Fig. 4C). Accuracy significantly varied across
ROIs (main effect of ROL F5 o = 3.46, p = 0.007, 115 = 0.16), with ac-
curacy numerically highest in VTC. To provide a sense of the subjective
accuracy of recall-based reconstructions, we used the “most_similar”
function of Word2Vec to generate examples of words that were most
similar to the reconstructed semantic components. The “most_similar”
function generates these words by computing the cosine similarity be-
tween the mean of the projection weight vectors (derived from the en-
coding model) and the vectors for each word in the Word2Vec model.
Fig. 5 shows examples for images with varying degrees of recall-based
reconstruction accuracy. Specifically, we pooled the reconstructed se-
mantic component scores in VTC across all subjects and sessions, and
then rank ordered these reconstructed scores by accuracy (match to the
target scores). Examples of the “most similar” words are included for
reconstructions that were in the top 1%, top 25%, and top 50%.
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While all ROIs exhibited above-chance content reconstruction for
both recognition-based and recall-based reconstructions, the difference
between recognition- versus recall-based reconstructions markedly var-
ied across ROISs, as reflected by an interaction between trial type (recog-
nition, recall) and ROI (Fs,90 = 24.88, p < 0.0001, r;i = 0.58). Whereas
content reconstruction accuracy was much higher for recognition than
recall in VTC (;(12 =15.6, p < 0.0001, g = 0.052, SE = 0.012) and OTC
(;(12 =50.7, p < 0.0001, g = 0.103, SE = 0.010), reconstruction accu-
racy in parietal regions did not significantly differ for recognition versus
recall trials (ANG: y7 =2.16, § = 0.014, SE = 0.009; SMG: y{ = 0.58,
p = -0.008, SE = 0.011; SPL: ;(]2 =149, p = 0.012, SE = 0.010; IPS:
;(12 =0.74, p = 0.010, SE = 0.011; p values > 0.140) (Fig. 4D). Thus,
whereas VTC and OTC exhibited a clear ‘preference’ for images that
were visually present (recognition trials), reconstructions from parietal
regions were of comparable success when images were visually present
(recognition trials) or entirely driven by memory (recall trials).

Given that the visual cortical ROIs (VTC and OTC) contained many
more voxels than the parietal ROIs, one concern is that main effects of
ROI and/or interactions by ROI may have been driven by differences
in the number of voxels. To address this concern, we randomly sub-
sampled voxels from the VTC and OTC ROIs for each subject so that
they matched the mean size of the ANG ROL Critically, the interaction
between trial type (recognition, recall) and ROI remained significant
(Fs,90 = 23.17, p < 0.001, "12 = 0.56). For recognition trials alone, the
main effect of ROI was also significant (F5 4o = 286.5, p < 0.0001,
113 = 0.94), driven by markedly higher accuracies for the visual ROIs.
For recall trials alone, the main effect of ROI was no longer significant
(Fs,90 = 1.05, p = 0.394, '1,% = 0.06).

3.4. Similarity between reconstructed content and verbal descriptions of
memories

In the preceding analyses, the target semantic content of each im-
age was defined by image annotations that are part of the COCO im-
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Fig. 4. Accuracy for fMRI-based reconstructions of semantic component
scores. A. Anatomical regions of interest (ROISs), visualized on the inflated
surface of an averaged template brain (from FreeSurfer). Top: left lateral
view. Bottom: left medial view. B. Mean reconstruction accuracies of se-
mantic component scores for each ROI based on encoding models trained
and tested on recognition trials. Independent COCO annotations were used
to define the ‘actual’ content of each image and semantic component scores
from these annotations were then compared to semantic component scores
reconstructed from fMRI activity patterns during the covert cued recall
phase. Accuracy is expressed as within-item correlations — across-item cor-
relations, with positive values (i.e., > 0) reflecting successful (item-specific)
reconstructions. Accuracy was significantly above chance for all ROIs. C.
As in B, but based on encoding models trained on recognition trials and
tested on recall trials. Accuracy was significantly above chance for all ROIs.
D. Difference in reconstruction accuracy for recognition vs. recall trials (B
vs. C). Positive values reflect higher accuracy for recognition trials than re-
call trials. Only VTC and OTC exhibited significantly greater accuracy for
recognition-based reconstructions than recall-based reconstructions. Also
see Fig. S2 for similarity matrices of semantic component scores recon-
structed from each ROI, separately for recognition and recall trials. Notes:
dots represent data from individual sessions with each subject represented
by a different shape; *** p < 0.001.

age dataset. We next tested the degree to which semantic component
scores reconstructed from the inverted fMRI encoding models (mea-
sured during the scanned cued recall task) matched the semantic com-
ponent scores derived from subjects’ own verbal memory of each im-
age (measured during the post test) (Fig. 6A). As described for behav-
ioral analysis of the verbal recall data (Fig. 3B), each subject’s ver-
bal recall of each image was translated into 30 semantic component
scores. These target component scores could then be readily compared
to (correlated with) the semantic component scores predicted from the
inverted fMRI encoding models. Again, we found higher within- than
across-item correlations in each of the visual and parietal ROIs (Fig. 6B)
(VTC: rank = 58.18%j; ;(12 =49.7, p < 0.0001, g = 0.087, SE = 0.012;
OTC: rank = 54.70%); ;(12 =212, p < 0.0001, g = 0.055, SE = 0.011;
ANG: rank = 55.22%; > = 14.1, p < 0.0001, § = 0.050, SE = 0.013;
SMG: rank = 54.20%; ;(12 =12.3, p = 0.0004, g = 0.047, SE = 0.001;
SPL: rank = 53.23%; y? = 7.4, p = 0.007, # = 0.038, SE = 0.014; IPS:
rank = 53.93%; ;(12 =74, p = 0.007, p = 0.036, SE = 0.013). Accu-
racy varied across ROIs (main effect of ROL F5qy = 2.75, p = 0.024,
'Iﬁ = 0.13), with accuracy numerically highest in VTC. These results con-
firm that the reconstructed semantic information from LPC and visual
regions matched subjects’ verbal descriptions of their memories.

While the preceding analysis confirms a match between verbal re-
call and reconstructed semantic component scores, an even stricter test
is whether the semantic component scores reconstructed from a given
subject’s fMRI data more closely resembled the semantic component
scores from that subject’s verbal recall compared to semantic component
scores from other subjects’ verbal recall of the exact same images. To test
this, we first calculated the Pearson correlations between the semantic
component scores reconstructed from a given subject’s inverted fMRI
encoding model and the corresponding semantic component scores de-
rived from that same subject’s verbal recall (within-subject similarity).
We then compared this within-subject similarity to across-subject simi-
larity: the correlations between a given subject’s reconstructed seman-
tic component scores and the corresponding semantic component scores
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Rank  Example images Closest words Similarity
freshly steamed 0.636
thickly sliced 0.634
1% sauce spoon 0.628
oven roasted vegetables  0.625
steamed cauliflower 0.623
skateboarders 0.565
mountain 0.548
1% snowplowed 0.537
riding 0.528
vert ramps 0.522
brakes malfunctioned 0.518
car collides 0.513
25% aircraft 0.475
fences 0.466
motorcycle 0.433
dog mauls 0.560
tossing frisbee 0.556
25% riding bicycle 0.554
jogging 0.546
skimboarding 0.531
evergreen bushes 0.649
purple violets 0.618
50% unmown 0.616
oncoming traffic 0.608
snowplowed 0.601
dolphins frolicking 0.633
beach 0.577
50% yachts bobbing 0.576
pier 0.547
lifeboat rescues 0.534

Fig. 5. Examples of reconstructed image content from VTC. (Left) Rank of the
reconstruction accuracy pooled over all subjects and sessions. (Middle left) Ex-
ample images being recalled. (Middle right) The top 5 most similar words and
word combinations describing the semantic component scores reconstructed
from VTC. The words were generated by the Word2Vec default ‘most_similar’
function. (right) Similarity scores between vectors corresponding to the content
reconstructed from VTC and vectors of the Word2Vec most similar words.

derived from different subjects’ verbal recall of the same images. It is im-
portant to emphasize that both of these measures were within-item cor-
relations (i.e., they relate to the exact same images). If within-subject
similarity exceeds across-subject similarity, this provides evidence for
a subject-specific correspondence between fMRI-based reconstructions
and verbal recall.

For each subject, session, and ROI we compared within-subject simi-
larity to across-subject similarity in order to generate an accuracy score
for each image. This image-specific accuracy score reflected the percent-
age of comparisons for which within-subject correlations were greater
than across-subject correlations. For example, for a given image recalled
by subject 1, the fMRI-based reconstructed semantic component scores
would be correlated with the semantic component scores derived from
verbal recall from subject 1 (within-subject similarity) and with the se-
mantic component scores derived from verbal recall from subjects 2,
3 and 4 (across-subject similarity). If, for example, the within-subject
correlation [r(1,1)] was greater than two of the three possible across-
subject correlations [r(1,2), r(1,3), r(1,4)], this would correspond to
an accuracy of 66.66% for that image. In this manner, the mean ac-
curacy was computed for each subject, session, and ROI. Chance-level
accuracy was 50% (i.e., by chance, within-subject similarity should ex-
ceed across-subject similarity 50% of the time). Strikingly, we observed
above-chance accuracy—i.e., subject-specific reconstructions—in VTC
(54.39%, t;g = 2.90, p = 0.009, Cohen’s d = 0.66)—which was also
the ROI that exhibited the highest recall-based reconstruction accuracy
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in each of the preceding analyses. Accuracy did not exceed chance in
any of the other ROIs [OTC: M = 49.21%, t;3 = —0.36, p = 0.720,
Cohen’s d = —0.08; ANG: M = 47.76%, t;g = —0.96, p = 0.348, Co-
hen’s d = —0.22; SMG: M = 51.36%, t;g = 0.67, p = 0.512, Cohen’s
d = 0.20; SPL: M = 50.40%, t;g = 0.24, p = 0.816, Cohen’s d = 0.05; IPS:
M = 48.11%, t;g = —1.04, p = 0.310, Cohen’s d = —0.24].

To more explicitly emphasize subject-unique information expressed
during verbal recall, we also repeated the analysis described above
but only after subtracting out the semantic component scores from the
COCO annotations from each subject’s verbal recall component scores.
In other words, we subtracted out ‘normative’ information from each
subject’s recall. With this approach, we again observed above-chance
accuracy—i.e., subject-specific reconstructions—in VTC (M = 55.26%,
t;g = 2.58, p = 0.019, Cohen’s d = 0.59), and also in SMG (M = 53.95%,
t;g = 2.17,p = 0.043, Cohen’s d = 0.50). Accuracy was not above chance
for any of the other ROIs (p’s > 0.05).

Finally, to directly establish the degree to which subject-specific re-
constructions depended on variability in verbal recall across subjects,
we computed the mean correlations in verbal recall for each pair of
subjects recalling the same images (see Tables S2 and S3). For each sub-
ject and session, we then median split the images in the recall session
according to whether they were associated with high or low across-
subject variability (i.e., low vs. high correlations). We then computed
subject-specific reconstruction accuracy, as described above. Across
ROIs, subject-specific reconstruction accuracy was significantly greater
for high-variability images than low-variability images (main effect of
variability: F; ;5 = 5.56, p = 0.030, '1,% = 0.24; Fig. S3). Thus, the ability
to measure subject-specific reconstructions benefitted from variability
in how different subjects recalled the same image.

3.5. Across-subject reconstruction of recalled memories

Finally, we tested whether information ‘learned’ by the semantic en-
coding models (i.e., the mappings between voxel activity patterns and
semantic component scores) successfully transferred across individuals.
More specifically, we tested whether the contents of memory recall for
each subject could be reconstructed using encoding models trained on
data from independent subjects. To test this, we iteratively trained se-
mantic encoding models using the recognition data from three of the
four subjects and tested the model on recall trials from the held-out
subject. That is, the weight matrix that was applied to each subject’s
fMRI activity patterns from the recall trials was entirely derived from
independent subjects. We first tested content reconstruction accuracy by
correlating the reconstructed component scores with component scores
derived from the COCO annotations (as in Fig. 4C). Again, within-item
similarity was compared against across-item similarity. Successful re-
construction (greater within-item similarity than across-item similarity)
was observed in ANG (rank = 53.23%; )(12 =13.6, p = 0.0002, g = 0.033,
SE = 0.009), SPL (rank = 52.39%; x> =55, p = 0.020, § = 0.022,
SE = 0.010), IPS (rank = 52.15%; z? =54, p = 0.020, § = 0.022,
SE = 0.009), VTC (rank = 56.90%; )(12 =37.8, p < 0.0001, g = 0.056,
SE = 0.009), and OTC (rank = 53.98%; ;(]2 =10.5, p =0.001, g = 0.027,
SE = 0.008) (Fig. 7A).

We next replicated this analysis with the only difference being that
reconstructed component scores were correlated with component scores
derived from each subject’s (own) verbal recall (as in Fig. 6B). Again,
within-item similarity was greater than across-item similarity in ANG
(rank = 54.39%j; ;(12 =157, p < 0.0001, g = 0.049, SE = 0.012), SPL
(rank = 52.11%; ;(12 =64, p = 0.011, p = 0.032, SE = 0.013), IPS
(rank = 52.96%; 77 =7.7, p = 0.005, § = 0.034, SE = 0.012), VTC
(rank =55.06%; )(12 =24.1,p < 0.0001, p =0.056, SE = 0.011), and OTC
(rank = 53.10%; x> = 6.4,p=0.011, = 0.031, SE = 0.012) (Fig. 7B). In-
terestingly, reconstruction of verbal recall content was not significantly
different when the encoding models were trained/tested across sub-
jects (Fig. 7B) vs. trained/tested within-subjects (Fig. 6B) (main effect
of within- vs. across-subject encoding model: F; ;5 = 2.06, p = 0.168,
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Fig. 6. Correspondence between semantic component scores reconstructed from fMRI vs. derived from verbal recall. A. Schematic of the analysis. For each to-be-
recalled image for each subject, semantic component scores were reconstructed (predicted) from fMRI activity patterns using semantic encoding models trained on
the recognition trials and tested on the recall trials. These reconstructed semantic component scores were then correlated with semantic component scores derived
from subjects’ verbal recall of the same image (measured during the post-scan overt cued recall test). B. Reconstruction accuracy as reflected by the difference
between within-item vs. across-item correlations, with all correlations performed within-subject. Reconstruction accuracy was significantly above chance for all
ROIs. C. Subject-specific reconstructions. To test for subject-specific (idiosyncratic) reconstructions, the semantic component scores reconstructed from one subject’s
fMRI data were correlated with semantic component scores generated from (i) the same subject’s verbal recall data (e.g., Sub. 1 -> Sub. 1, black arrow, in A) and
(ii) other subjects’ verbal recall data of the exact same images (e.g., Sub- 1 -> Sub. 2, gray arrows, in A). Reconstructions were considered to contain subject-specific
information when within-subject correlations were higher than the across-subject correlations. Data shown reflect the mean percentage of within-subject correlations
that exceeded across-subject correlations. Accuracy was significantly above chance (dash line, 50%) only for VTC. Notes: dots represent data from individual sessions
with each subject represented by a different shape; ** p < 0.01, *** p < 0.001.
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Fig. 7. Across-subject application of the semantic encoding models. For these analyses, the semantic encoding model was iteratively trained on recognition trials
from 3 of the 4 subjects and then tested on recall trials from the held-out subject. A. Mean accuracy of reconstructed semantic component scores for each ROI based
on comparison to semantic component scores derived from COCO annotations (within-item correlations — across-item correlations). B. Mean reconstruction accuracy
for each ROI based on comparison to semantic component scores derived from verbal recall (within-item correlations — across-item correlations). For B, although the
training/testing of the encoding models was performed across subjects, the covert recall trials used for reconstructing the semantic component scores and the verbal
recall trials used for testing accuracy were always within the same subject. Notes: dots represent data from individual sessions with each subject represented by a
different shape; ** p < 0.05, ** p < 0.01, *** p < 0.001, two tailed.

n‘% =0.10). These findings provide evidence that, across subjects, the mantic features and fMRI activity patterns using voxelwise encoding
mappings between semantic content and fMRI activity patterns were models. By inverting the encoding models, we tested whether the seman-
shared to a degree that encoding models could be transferred to inde- tic content of retrieved memories could be reconstructed from evoked
pendent subjects to reconstruct the contents of memory recall. fMRI activity patterns. Using a multiple-session training procedure, we

show that semantic content was successfully reconstructed from fMRI
activity patterns in lateral parietal and visual cortices. Notably, how-
ever, reconstruction accuracy differed across these regions according to
whether images were visually present (during recognition) or cued by

4. Discussion

In the current study, we extracted high-level semantic features from
complex natural images and modeled relationships between these se-
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arbitrarily-associated abstract images (during recall). Whereas recon-
struction accuracy in visual cortex was markedly lower when images
were recalled from memory (recall trials) compared to when they were
visually present (recognition trials), lateral parietal regions were rela-
tively insensitive to this difference between trial types. Separately, by
applying natural language processing methods to subjects’ verbal recall
data and projecting these recall data into the same feature space as the
fMRI reconstructions, we also established that fMRI-based reconstruc-
tions reliably matched subjects’ verbal recall data. In fact, reconstruc-
tions from ventral temporal cortex reflected idiosyncratic differences in
how different subjects remembered the exact same image. Finally, we
show that encoding models trained on a subset of subjects reliably trans-
ferred to held-out subjects, indicating that the mapping between fMRI
activity patterns and semantic content was consistent enough across
subjects to allow for across-subject reconstructions. Collectively, these
findings provide important evidence for multidimensional memory rep-
resentations in lateral parietal and visual cortices and establish the rele-
vance of these neural representations to complex behavioral expressions
of memory recall.

4.1. Reconstruction and recall of multidimensional memory representations

Numerous prior fMRI studies have demonstrated content-sensitivity
of fMRI activity patterns in visual and lateral parietal cortices dur-
ing memory retrieval (Favila et al., 2018; Kuhl et al., 2011; Kuhl and
Chun 2014; Lee et al., 2019; Polyn et al., 2005; St-Laurent et al.,
2015). However, the majority of this evidence comes from studies that
have measured an objective, single stimulus property or dimension.
For example, many studies have tested for decoding of visual cate-
gory information (Kuhl et al., 2011; Polyn et al., 2005). Others have
demonstrated an item-specific ‘match’ between fMRI activity patterns
elicited during memory encoding and those elicited during memory re-
trieval (Favila et al., 2018; Kuhl and Chun 2014; Lee et al., 2019; St-
Laurent et al., 2015). While the current findings also constitute evidence
for item-specific representations (in that our analyses revealed differ-
ences between individual scene images), the key difference in the cur-
rent study is that item-specific representations were ‘built’ by predicting
and combining constituent features (Lee and Kuhl 2016; Naselaris et al.,
2011). In fact, reconstructions were based on encoding models that were
not trained on the to-be-reconstructed images (Brouwer and Heeger
2009). Thus, the stimulus-specific representations observed here cannot
be explained by subjects generating verbal labels or stimulus-specific
tags during encoding and then re-expressing that label/tag during re-
call.

The motivation for establishing multidimensional neural represen-
tations of memories is that these measures have the potential to cap-
ture the richness, subjectivity, and idioscynracies with which real world
memories are recalled. Critically, however, validation of these neural
representations requires behavioral expressions of memory that also
capture the same richness, subjectivity, and idiosyncracies. Our solu-
tion to this problem was to use natural language processing methods
that allowed our fMRI and behavioral data to be described using the
same feature dimensions. Considering the behavioral recall data alone,
text embeddings were highly sensitive to differences between images
(Fig. 3B, C) validating the use of this method to characterize verbal re-
call data (Heusser et al., 2021; Song et al., 2021). Moreover, across vi-
sual and lateral parietal ROIs, there was strong correspondence between
fMRI-based reconstructions and subjects’ verbal recall (Fig. 6B), demon-
strating that the multidimensional fMRI reconstructions aligned with
the multidimensional expressions of verbal recall. Most strikingly, re-
constructions generated from ventral temporal cortex were significantly
more similar to subjects’ own verbal recall compared to other subjects’
verbal recall of exactly the same images. In other words, ventral tem-
poral cortex reconstructions reflected subjective or idiosyncratic differ-
ences in how scene images were remembered. This effect is particularly
notable when considering that there were no experimental pressures for
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subjects to use unique language or to differentiate their responses from
other subjects. Thus, these methods may be even more sensitive to sub-
jective/idiosyncratic information in experimental contexts where there
are factors that promote memory differentiation (Favila et al., 2016;
Hulbert and Norman 2015; Kim et al., 2017).

4.2. Reconstructions in lateral parietal cortex versus visual cortical areas

Not surprisingly, reconstructions from visual cortical areas (VTC,
OTC) were markedly higher when images were visually present (recog-
nition trials) compared to when they were visually absent (recall tri-
als). In contrast, this fundamental distinction between trial types did
not significantly influence reconstruction accuracy in LPC regions. No-
tably, several recent studies have specifically shown that, in contrast to
visual cortical regions, LPC representations are stronger during mem-
ory recall compared to memory encoding or perception (Akrami et al.,
2018; Favila et al., 2018, 2020; Long and Kuhl 2021; Xiao et al., 2017).
While a definitive account of why LPC is biased towards memory-based
information is not yet clear (Favila et al., 2020), the current findings
provide additional support for a relative preference toward memory-
based information in LPC. Here, however, we did not observe stronger
(more accurate) LPC reconstructions during recall compared to recogni-
tion. That said, it is important to emphasize that recognition-based re-
constructions were generated from models trained and tested on recog-
nition trials whereas recall-based reconstructions were generated from
models trained on recognition trials but tested on recall trials. Thus, a
direct comparison of reconstruction accuracy for recall versus recogni-
tion trials is not an apples-to-apples comparison. Instead, the critical
statistical comparison is the relative sensitivity of visual versus LPC re-
gions to the difference in trial types. Indeed, this interaction was highly
significant (Fig. 4C).

An obvious question raised by the current findings is whether recall
reconstructions would be significantly better if the encoding model had
been trained only on recall trials (Chen et al., 2017). This is particu-
larly relevant for LPC where transfer from visual perception (recogni-
tion) to recall may be limited (Favila et al., 2018, 2020; Long and Kuhl
2021; Xiao et al., 2017). Enhancing overall reconstruction accuracy in
LPC might also have revealed greater heterogeneity across LPC ROIs.
In our study, however, training the encoding model only on recall tri-
als was not feasible because the number of recall trials was relatively
small (far fewer than the number of recognition trials). At a practical
level, recall trials are much harder to include in large numbers because
they depend on pre-training the paired associations (e.g., we used an
extensive training procedure to ensure successful, vivid recall; Fig. 1).
However, in an effort to address the potential concern of poor transfer
from ‘pure perception’ trials to recall trials, we opted to pre-expose sub-
jects to images in the recognition set such that the images used for model
training were ‘old’ images. The sole rationale for the pre-exposure phase
was that the semantic encoding models might better transfer to recall
trials if the training trials had some memory component. Specifically,
we reasoned that the representational format of a recall trial might be
more similar to an ‘old’ recognition trial than to an entirely novel stimu-
lus. While this thinking was informed by recent findings (Akrami et al.,
2018; Favila et al., 2018, 2020; Long and Kuhl 2021; Xiao et al., 2017),
it was not our intention—nor are we able—to test whether this de-
sign feature actually improved model transfer. That said, it does rep-
resent an interesting question that could be tested empirically in future
studies.

While we observed evidence for idiosyncratic (subject-specific) re-
lationships between fMRI-based reconstructions and verbal recall when
considering reconstructions from VTC, we did not observe significant
relationships for any of the LPC ROIs. On the one hand, this null result
for LPC regions is surprising in light of evidence that memory reacti-
vation in LPC has been associated with subjective qualities of memory
recall (Bone et al., 2020; Johnson et al., 2015; Kuhl and Chun 2014;
Richter et al., 2016). However, across analyses, reconstruction accuracy
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was higher in VTC than in LPC ROIs, meaning there simply may have
been better sensitivity within VTC to subtle differences in within-subject
versus across-subject comparisons. As described above, it is possible that
training the encoding models on recall trials (as opposed to recognition
trials) might boost performance in LPC ROIs and thereby improve sen-
sitivity to subject-specific differences. Indeed, we view this as a very in-
teresting and reasonable possibility. Alternatively, it is possible that LPC
preferentially expresses representational formats of retrieved memories
that are relatively shared across subjects (Chen et al., 2017). Given that
both of these are viable possibilities, we would caution against draw-
ing conclusions based on the absence of significant subject-specific ef-
fects in the LPC ROIs. Instead, we view the significant results in VTC
as a proof of concept that our methodological approach can be used
to identify subject-specific idiosyncrasies in how complex images are
remembered.

4.3. Semantic encoding models generalize across subjects

Although we deliberately used an extensive-sampling procedure to
maximize the amount of within-subject training data available for the
encoding models (see Fig. S4 for consideration of how the amount of
within-subject training data influenced model performance), we also
show that encoding models transferred quite well across subjects. Specif-
ically, training encoding models using recognition trials from N-1 sub-
jects allowed for successful recall-based reconstruction in held out sub-
jects (Fig. 7). In fact, recall-based reconstruction was of comparable ac-
curacy when using within-subject encoding models (Fig. 6B) vs. across-
subject encoding models (Fig. 7B). This successful transfer across sub-
jects indicates that the mapping between semantic components and
fMRI activity patterns was shared—at least to some degree—across dif-
ferent individuals. Importantly, this shared mapping between semantic
information and fMRI activity patterns is not at odds with our finding
(or the idea) of idiosyncratic memory representations. For example, con-
sider two individuals that had breakfast together. These individuals may
have a common neural representation of the concept of coffee, and each
of them may have had coffee for breakfast. However, when remember-
ing breakfast, these individuals may differ in the degree to which the
concept of coffee is a salient component of their memory and, therefore,
in the degree to which the neural representation of coffee is activated
when they remember breakfast. Thus, leveraging shared mappings (i.e.,
encoding models trained across different individuals) need not come
at the expense of identifying idiosyncratic ways in which individuals
perceive or remember their experiences (Finn et al., 2018; Finn et al.
2020).

More generally, the success of the across-subject encoding mod-
els has two main implications. First, this finding adds to a growing
body of evidence that, even for complex and naturalistic stimuli (e.g.,
movies and narratives), there is a surprising degree of consistency
across individuals in how these stimuli are represented in patterns of
neural activity (Chen et al., 2017; Finn et al., 2018; Hasson et al.,
2004; Zadbood et al., 2017). Second, leveraging across-subject encoding
models could have substantial practical—and theoretical—advantages.
For example, as noted above, it was not feasible in our experimental
paradigm for each subject to learn and recall thousands of different
scenes (due to the training time it would require and the deterioration
in memory performance that would be expected with such a large mem-
ory set). However, it is much more feasible to obtain thousands of re-
call trials across subjects. Thus, some analyses which are impractical—or
that would be data starved—within subjects, might become feasible if
across-subject models are leveraged. Moreover, a single well-powered
training data set could potentially be applied to many distinct test
sets. Finally, it is also notable that here, we only aligned across-subject
data in anatomical space. Additional gains in across-subject transfer
may well be realized by aligning data in a common high-dimensional
functional space (Chen et al., 2015; Haxby et al., 2011; Haxby et al.,
2020).
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5. Conclusions

To summarize, we used inverted semantic encoding models applied
to fMRI data to reconstruct multidimensional content in natural scene
images as they were viewed and recalled from memory. We found that
visual and lateral parietal cortices supported successful reconstructions
both when viewing and recalling images. However, whereas lateral pari-
etal reconstructions were relatively insensitive to whether images were
viewed or recalled from memory, visual cortical reconstructions were
markedly lower for recalled versus viewed images. Additionally, by ap-
plying natural language processing methods to behavioral measures of
memory recall, we show that fMRI-based reconstructions of recalled
content matched subjects’ verbal recall and that fMRI-based reconstruc-
tions even reflected idiosyncratic qualities of subjects’ recall. Finally, we
show that semantic encoding models reliably transferred across individ-
uals, allowing for successful reconstruction of a given subject’s memory
using encoding models trained on entirely different individuals. Collec-
tively, these findings provide important evidence characterizing multi-
dimensional memory representations and linking their neural and be-
havioral expressions.
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