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Abstract 14 

A stimulus can be familiar for multiple reasons. It might have been recently encountered, or is 15 
similar to recent experience, or is similar to ‘typical’ experience. Understanding how the brain 16 
translates these sources of similarity into memory decisions is a fundamental, but challenging 17 
goal. Here, using fMRI, we computed neural similarity between a current stimulus and events 18 
from different temporal windows in the past and future (from seconds to days). We show that 19 
trial-by-trial memory decisions (is this stimulus ‘old’?) were predicted by the difference in 20 
similarity to past vs. future events (temporal asymmetry). This relationship was (i) evident in 21 
lateral parietal and occipitotemporal cortices, (ii) strongest when considering events from the 22 
recent past (minutes ago), and (iii) most pronounced when veridical (true) memories were weak. 23 
These findings suggest a new perspective in which the brain supports memory decisions by 24 
comparing what actually occurred to what is likely to occur. 25 
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Introduction  27 

The ability to recognize a previously-encountered stimulus (recognition memory) is one of the 28 
most fundamental and well-studied forms of memory in both humans and non-human animals1–29 
3. Over the past several decades, there has been substantial progress in identifying the brain 30 
regions that are involved in recognition memory decisions. In particular, univariate activation in 31 
subregions of lateral parietal cortex has been shown to scale with memory decisions (whether a 32 
stimulus is judged to be ‘old’ vs. ‘new’). However, a more elusive goal is to identify the specific 33 
computations that these brain regions perform in order to reach recognition memory decisions. 34 

According to a highly influential class of computational models, recognition memory decisions 35 
are based on ‘global similarity’ (sometimes called ‘summed similarity’) between a current 36 
stimulus (a memory ‘probe’) and other recently-encountered stimuli. The core idea in these 37 
models is that if global similarity between the probe and recent experience is sufficiently high, 38 
the probe will be judged ‘old’4–6. These models, which are collectively referred to as global 39 
matching models, can explain an impressive number of findings from behavioral studies7–9. One 40 
particularly appealing aspect of these models is that they provide an elegant way of explaining 41 
why novel probes are sometimes falsely recognized. Namely, when a probe is novel, false 42 
recognition will occur if the probe has sufficiently high global similarity with other, studied stimuli. 43 

To date, a few human fMRI studies have used pattern-based analyses to compute neural 44 
measures of global similarity. These studies have found that higher neural global similarity—45 
including in lateral parietal cortex—is associated with a greater likelihood of endorsing a memory 46 
probe as ‘old’10–12. However, these studies suffer from a critical limitation: they do not consider 47 
the role of time. If neural measures of global similarity are capturing the influence that episodic 48 
memories of past experiences exert on current decisions, then time will be a critical factor. For 49 
example, events from the recent past should have a greater influence on current memory 50 
decisions than events from the distant past. However, it is alternatively possible that neural 51 
measures of global similarity do not, in fact, capture the influence of episodic memory but 52 
instead capture time-invariant effects of similarity. For example, a probe may have high neural 53 
similarity to other stimuli (whether they are in the past or even the future) simply because the 54 
probe is a more typical/common stimulus, or more consistent with schemas that have been 55 
generated from a lifetime of experience. This alternative account is important because it is well 56 
documented that when novel memory probes are more typical, they are more likely to be (falsely) 57 
judged as ‘old’13,14. Thus, to understand the neural computations that drive recognition memory 58 
decisions, it is imperative—but not trivial—to tease apart time-variant influences (e.g., recent 59 
experience) from time-invariant influences.  60 

Here, in order to isolate the influence of recent experience on current memory decisions, we 61 
leveraged data from the Natural Scenes Dataset15—a massive human fMRI study in which 8 62 
subjects each completed tens of thousands of trials of a continuous recognition memory test 63 
distributed over many months (Figure 1a, b). On each trial, subjects saw a natural scene image 64 
and decided whether the image was ‘old’ or ‘new’ (in the context of the experiment). On a trial-65 
by-trial basis, we computed the fMRI pattern similarity of the current stimulus (probe) not only to 66 
events from the past (sampling from seconds to days in the past), but also to events in the future 67 
(the mirror image of events in the past). This unique analysis approach allowed us to identify brain 68 
regions that exhibited temporally-asymmetric relationships between global similarity and 69 
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memory decisions. If memory decisions are more strongly influenced by neural similarity to past 70 
events compared to future events (i.e., a backward asymmetry), this provides unambiguous 71 
evidence for an influence of episodic memories on current decisions. Conversely, if memory 72 
decisions are driven by more generic effects of typicality (that are time-invariant), no temporal 73 
asymmetry would be expected.  74 

Motivated by numerous neuroimaging studies implicating lateral parietal cortex in recognition 75 
memory decisions16–18—and in representing the contents of memories19–21—we specifically 76 
predicted a backward asymmetry in lateral parietal cortex. That is, we predicted that the decision 77 
to endorse a probe as ‘old’ would be driven by the strength of lateral parietal similarity to past 78 
events relative to future events. For comparison, we also considered several additional regions 79 
of interest that are involved in memory, vision, and motor responses. 80 

To preview, we show that recognition memory decisions are robustly predicted by backward 81 
asymmetry of global similarity in lateral parietal cortex. This influence was selective to events 82 
from the recent past (as opposed to more temporally-distant events) and was also related to the 83 
objective mnemonic history of a probe: global similarity had the strongest effect on memory 84 
decisions when the probe had not recently been encountered. Finally, using convolutional neural 85 
networks, we show that neural measures of global similarity that drive memory decisions 86 
primarily contain information about high-level semantic features. Collectively, these findings 87 
provide new insight into how recognition memory decisions are computed. In particular, our 88 
findings support an account of memory decisions in which time-variant similarity to recent 89 
events from the past is ‘baselined’ against time-invariant similarity (here, measured as similarity 90 
to future events). 91 

Results 92 

Recognition memory performance 93 

Considering performance across all experimental sessions, mean recognition memory 94 
discriminability (d') was 1.23 (range across subjects: 0.69 – 2.92), which was significantly above 95 
chance (t(39) = 15.53, p < 0.001). However, performance significantly decreased over sessions 96 
(linear mixed-effects model, c2

(1) = 308.04, p < 0.001) (Figure 1c). The mean hit rate across all 97 
sessions was 62.8% (54.6% – 86.5%) and the mean false alarm rate was 23.3% (4.6% – 39.9%). 98 
Linear mixed-effects models revealed that while the hit rate decreased across sessions (c2

(1) = 99 
74.35,   p < 0.001), the false alarm rate increased (c2

(1) = 117.76, p < 0.001).  100 

One distinct advantage of the current data set is that it provides an incredibly large number of 101 
total trials per subject and, consequently, a very large number of both ‘hit’ trials (repeated images 102 
correctly identified as ‘old’) and ‘false alarm’ trials (novel images falsely identified as ‘old’). The 103 
mean number of hit trials per subject was 10,414 (range: 6749 – 15682) (Figure 1d) and the mean 104 
number of false alarm trials was 1,715 (range: 494 – 3,087) (Figure 1e). 105 

Because not all subjects completed all 40 experimental sessions (range: 30 – 40 sessions), we 106 
restricted subsequent analyses to the first 30 sessions so that session effects were matched 107 
across subjects. Considering only the first 30 sessions, the mean d', hit rate and false alarm rate 108 
were 1.34 (range: 0.78 – 2.92), 63.3% (range: 54.6% – 86.5%) and 20.2% (range: 4.6% – 32.5%), 109 
respectively. Across the first 30 sessions, each subject saw 9,209 novel images and 13,291 110 
repeated images. 111 
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 112 
Figure 1. Experimental design and memory performance. a, Experimental design. Subjects performed 113 
a continuous recognition task on a series of natural scene images. On each trial, subjects indicated 114 
whether the current image had been presented at any point, so far, in the experiment. b, Task schedule. 115 
Each subject completed 30 – 40 fMRI scan sessions. The first session corresponds to day 0. c, Memory 116 
discriminability (d') as a function of session number. Each colored line without error bars represents data 117 
from an individual subject. The blue line with error bars shows the mean d' across subjects. Chance 118 
performance corresponds to a d’ of 0. The vertical grey dashed line marks the last session (30) included in 119 
the main analyses. d, The cumulative number of hit trials as a function of session number. e, The 120 
cumulative number of false alarm trials as a function of session number. Error bars reflect the standard 121 
error. 122 

Predicting memory decisions from neural global pattern similarity 123 

Our overarching goal was to isolate the influence that past events exerted on memory decisions 124 
in the continuous recognition task. Because we hypothesized that the relative recency of past 125 
events would determine their influence, we separated past events into three temporal 126 
windows—immediate, recent, and distant—that corresponded to events from the same scan run 127 
(immediate), the same scan session (recent), or a different scan session (distant). Specifically, 128 
the immediate temporal window binned trials from the same scan run as the current probe, 129 
extending 15 trials in the past (mean temporal distance to probe = 35.0 seconds, range: 4.0 130 
seconds to 68.0 seconds); the recent temporal window included trials from the preceding 3 scan 131 
runs, excluding trials within the same scan run as the probe (mean = 3.9 minutes, range: 2.8 132 
minutes to 37.1 minutes); and the distant temporal window included trials from the prior fMRI 133 
session (mean = 7.3 days, range: 1.0 days to 28.0 days).  134 
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To measure the similarity of each memory probe to events from the past, we used fMRI pattern 135 
similarity to compute neural measures of global similarity. Specifically, for each memory probe, 136 
global similarity within a given brain region of interest (ROI) was obtained by taking the fMRI 137 
activity pattern from the current trial (probe) and correlating it (Pearson correlation) with the fMRI 138 
activity pattern for each of the trials within a given temporal window. These correlations were 139 
then Fisher z-transformed and averaged, yielding a global similarity value for each of the three 140 
temporal windows in the past. Critically, we also computed global similarity to stimuli in the 141 
future using the same approach and same three temporal windows, but for stimuli that had not 142 
yet been encountered. Finally, for each temporal window, we subtracted ‘forward’ global 143 
similarity (to future events) from ‘backward’ global similarity (to past events). All global similarity 144 
analyses reported below were based only on this difference score (Figure 2a). Our rationale for 145 
this approach was that any temporally-symmetric similarity effects would cancel out. For 146 
example, if a given scene image (probe) includes very common objects or landmarks, then it 147 
should be normatively similar to other scenes (whether they occurred in the past or the future). 148 
In contrast, any contribution of episodic memory to global similarity would necessarily be 149 
temporally asymmetric (past > future). Thus, subtracting forward similarity from past similarity is 150 
a simple, but powerful way to isolate the influence of past experience. 151 

To test whether global similarity predicted memory decisions, we built mixed-effects logistic 152 
regression models in which global similarity values served as predictors and the outcome 153 
(dependent measure) was the memory decision for each probe (i.e., ‘old’ or ‘new’ response). Our 154 
initial models included global similarities from all three temporal windows as separate 155 
regressors. We also included a categorical regressor representing the veridical mnemonic 156 
history of the probe: whether the probe image was being presented for the 1st, 2nd or 3rd time (E1, 157 
E2, E3). In addition, session number and the proportion of old responses within each temporal 158 
window were also included in the model to account for potential decision criteria drift (across 159 
sessions) and the influence of response history (e.g., if a relatively high/low number of ‘old’ 160 
responses were made in a given temporal window). (See Methods for detailed model 161 
specifications). 162 

Motivated by prior studies, we focused our fMRI analysis on lateral parietal cortex10,11, which we 163 
divided into three regions of interest (ROI): angular gyrus (AnG), lateral intraparietal sulcus 164 
(LatIPS), and posterior intraparieral sulcus (pIPS) (Figure 2b). We also included ventral 165 
occipitotemporal cortex (VOTC) given its role in representing the content of natural scenes 166 
images22 and the hippocampus (HPC) given its importance in episodic memory23,24. In addition, 167 
we included early visual cortex (EVC) and primary motor cortex (M1) as active control regions. 168 
For EVC, we reasoned that while it would represent low-level properties of currently-displayed 169 
stimuli, these representations would not be related to memory. For M1, we had no reason to 170 
expect it to be involved in representing scene content or to be related to memory, but it serves as 171 
a useful control given that it should track motor responses. Each ROI was associated with a 172 
unique mixed-effects logistic regression model. 173 

As a first step, we tested for an omnibus global similarity effect by comparing full models (with 174 
all three global similarity regressors) to models without any global similarity regressors. This 175 
revealed that global similarity was predictive of memory decisions—with higher global similarity 176 
associated with a greater probability of an ‘old’ response—in LatIPS (c2

(9) = 22.16, p = 0.008), pIPS 177 
(c2

(9) = 31.75, p < 0.001), and VOTC (c2
(9) = 27.61, p = 0.001), with all three models surviving 178 
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correction for multiple comparisons. There was also a global similarity effect in EVC (c2
(9) = 18.71, 179 

p = 0.028), that did not survive correction, and a trend toward an effect in AnG (c2
(9) = 16.06, p = 180 

0.066). There was no effect of global similarity in HPC (c2
(9) = 2.83, p = 0.971) or M1 (c2

(9) = 7.50, p 181 
= 0.585). 182 

For the preceding analyses, all trials within a given temporal window were given equal weight 183 
(with pattern similarity simply averaged across all trials). While the idea of pooling across trials 184 
is central to global matching models, some models do give higher weight to past events that 185 
strongly match a current probe (i.e., high similarity matches)25. This does raise an important 186 
question of whether, in our analyses, there was any benefit to averaging across trials, as opposed 187 
to only using the most similar trials. Thus, we tested another set of models where, for each 188 
temporal window, we only included the similarity for the single trial that was most similar to the 189 
current probe. In other words, we replaced the averaged (global) similarity with the maximal 190 
similarity. For these models, regressors for each of the three temporal windows were included 191 
within the same model. Interestingly, maximal similarity did not predict memory decisions for 192 
any of the ROIs (AnG, c2

(9) = 14.16, p = 0.117; LatIPS, c2
(9) = 11.25, p = 0.259; pIPS, c2

(9) = 13.69, p 193 
= 0.134; VOTC, c2

(9) = 16.89, p = 0.051; HPC, c2
(9) = 8.95, p = 0.442; EVC, c2

(9) = 12.84, p = 0.170; 194 
M1, c2

(9) = 6.24, p = 0.716). Thus, at least when comparing the extremes—averaging with equal 195 
weight (global similarity) vs. selecting the maximal similarity—there was a clear advantage to 196 
global similarity.  197 

We next performed follow-up analyses again using global similarity to predict memory decisions, 198 
but separately for each temporal window (immediate, recent, distant). Interestingly, none of the 199 
ROIs exhibited a significant global similarity effect for the immediate temporal window (all p’s > 200 
0.14), though it should be noted that this temporal window contained the fewest trials. For the 201 
recent temporal window, however, there were significant effects in LatIPS (c2

(1) = 10.21, p = 0.001, 202 
survived correction), pIPS (c2

(1) = 22.61, p < 0.001, survived correction), VOTC (c2
(1) = 11.97, p < 203 

0.001, survived correction) and a trend in AnG (c2
(1) = 3.27, p = 0.071) (Figure 2c). There were no 204 

effects in EVC, HPC or M1 (p’s > 0.5). For the distant temporal window, only VOTC showed a 205 
significant global similarity effect (c2

(1) = 4.90, p = 0.027), but it did not survive correction for 206 
multiple comparisons (all other regions: p’s > 0.18). 207 

Taken together, the analyses thus far strongly implicate regions of lateral parietal cortex and 208 
VOTC in expressing representations that were predictive of memory decisions and specifically 209 
identify the recent temporal window—events that occurred minutes ago in the past—as being 210 
most influential. In subsequent analyses, we therefore focus on the lateral parietal and VOTC 211 
ROIs, and we restrict analyses to the recent temporal window. 212 
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 213 
Figure 2. Global similarity effects. a, Global similarity of neural patterns was calculated between the 214 
current trial and trials within each temporal window. The global similarity values from the forward (in the 215 
future) temporal windows were subtracted from the corresponding global similarity values from the 216 
backward (in the past) temporal window. b, Regions of interest included angular gyrus (AnG), lateral 217 
intraparietal sulcus (LatIPS), posterior intraparieral sulcus (pIPS), ventral occipitotemporal cortex (VOTC), 218 
hippocampus (HPC), early visual cortex (EVC) and premotor cortex (M1). ROIs are illustrated on the 219 
inflated FreeSurfer fsaverage cortical surface. All ROIs were combined across the left and right 220 
hemispheres. c, The global similarity effects within each temporal window. A positive coefficient indicates 221 
that greater global similarity is associated with higher probability to endorse images as 'old'. Error bar 222 
denotes standard error. 223 

Influence of global similarity depends on mnemonic history of probe 224 

In all of the global similarity models presented thus far, we included a regressor to account for 225 
the novelty of the probe—whether the probe was novel (1st exposure; E1) or had been presented 226 
before (2nd or 3rd exposure; E2, E3). However, an interesting question is whether the influence of 227 
global similarity varies as a function of the novelty of the probe. In particular, we hypothesized 228 
that global similarity would have a relatively stronger influence on memory decisions for Novel 229 
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probe trials compared to Old probe trials. Our rationale for this prediction was that when the 230 
probe was Novel, there is no ‘true’ memory signal (i.e., there is no event-specific true memory for 231 
the prior encounter) and, therefore, decisions would rely on global similarity (which pools across 232 
many trials). In contrast, for Old trials we reasoned that ‘true’ memory for a prior encounter with 233 
the probe would compete with—and largely override—the influence of global similarity. To test 234 
this, we constructed another set of mixed-effects logistic regression models. Here, based on 235 
results presented above, we only included the recent temporal window and only tested the 236 
lateral parietal ROIs and VOTC. Additionally, to create balance in the number of Novel vs. Old 237 
trials, we included E1 (1st exposure; Novel) and E2 (2nd exposure; Old) trials, but excluded E3 trials. 238 
Finally, and importantly, we excluded any E2 trials for which the corresponding E1 exposure fell 239 
within the recent temporal window. Thus, because E1 trials always occurred outside the 240 
temporal window from which global similarity was computed, the E1 trials did not directly 241 
contribute to global similarity values. As such, these analyses were not intended to test whether 242 
E1 trials had an effect on global similarity values; rather, the key question was whether E1 trials 243 
(that fell outside the global similarity window) weakened the influence of global similarity on 244 
memory decisions. 245 

Across each of the lateral parietal and VOTC ROIs, there was a significant effect of global 246 
similarity on memory decisions for Novel trials (AnG, β = 0.089, Z = 4.34, p < 0.001; LatIPS, β = 247 
0.072, Z = 3.52, p < 0.001; pIPS, β = 0.114, Z = 5.50, p < 0.001; VOTC, β = 0.074, Z = 3.52, p < 0.001; 248 
all survived correction) (Figure 3a). However, counter to our prediction, the effect of global 249 
similarity on memory decisions for Old trials was also significant in each of the lateral parietal 250 
and VOTC ROIs (AnG, β = 0.060, Z = 2.87, p = 0.004; LatIPS, β = 0.056, Z = 2.65, p = 0.008; pIPS, β 251 
= 0.080, Z = 3.79, p < 0.001; VOTC, β = 0.076, Z = 3.65, p < 0.001; all survived correction). Moreover, 252 
the global similarity effect was not significantly stronger for Novel trials than Old trials in any of 253 
the four ROIs (p’s > 0.24).  254 

Although we predicted that global similarity would have a weaker effect on memory decisions 255 
when a ‘true’ memory signal was present (Old trials), one potential explanation why we did not 256 
see this effect is that, for many of the Old trials, a true memory signal may have been quite weak. 257 
Specifically, given the highly protracted nature of the experiment (analyses included 30 fMRI 258 
sessions per subject distributed over many months), for many of the Old trials (E2), the prior 259 
exposure of the stimulus (E1) occurred days, weeks, or even months in the past. Thus, we ran 260 
another set of models, now focusing only on the Old trials (E2), but with these trials split into two 261 
groups based on when the prior exposure occurred (E1). ‘Old-within’ trials corresponded to E2 262 
trials for which E1 occurred within the same session—in other words, memory for the prior 263 
exposure was likely to be relatively strong. ‘Old-across’ trials corresponded to E2 trials for which 264 
E1 occurred in a prior session (i.e., at least a day in the past)—in other words, memory for the 265 
prior exposure was likely to be relatively weak or even absent. Strikingly, for the Old-within trials, 266 
there was no effect of global similarity for any of the parietal or VOTC ROIs (p’s > 0.14). In contrast, 267 
for the Old-across trials there were significant effects of global similarity for each of the ROIs 268 
(AnG, β = 0.081, Z = 3.38, p < 0.001; LatIPS, β = 0.077, Z = 3.23, p = 0.001; pIPS, β = 0.102, Z = 4.24, 269 
p < 0.001; VOTC, β = 0.104, Z = 4.28, p < 0.001; all survived correction). Moreover, the effect of 270 
global similarity was significantly stronger for Old-across trials than Old-within trials in AnG (Z = 271 
2.24, p = 0.025), LatIPS (Z = 2.35, p = 0.019) and VOTC (Z = 2.20, p = 0.027), but not in pIPS (Z = 272 
1.53, p = 0.126). Thus, when a true memory for past experience with a stimulus was relatively 273 
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strong (Old-within trials), this substantially reduced the influence of global similarity on memory 274 
decisions. 275 

Tradeoff between global similarity and true memory signals 276 

Our interpretation of the results for the Old-within trials is that the influence of global similarity 277 
was reduced by the availability of a true memory for prior experience with the stimulus (E1 278 
memory). To test this prediction more directly, we constructed another set of models—again 279 
using the Old-within and Old-across groupings and the same exclusion criteria as in the 280 
preceding model—but we now replaced global similarity with a measure of same-stimulus 281 
similarity. That is, we simply computed the E1-E2 pattern similarity and used this as a predictor 282 
of memory decisions (at E2). Note: for this model, we did not subtract ‘forward’ pattern similarity 283 
(E2-E3 similarity) from ‘backward’ pattern similarity (E1-E2 similarity) because the spacing 284 
between events was variable. In other words, it was not possible to create symmetrical measures. 285 

The influence of same-stimulus similarity on memory decisions was significant across each of 286 
the lateral parietal and VOTC ROIs for the Old-within (AnG, β = 0.185, Z = 2.49, p = 0.013; LatIPS, 287 
β = 0.386, Z = 4.82, p < 0.001; pIPS, β = 0.490, Z = 6.56, p < 0.001; VOTC, β = 0.506, Z = 7.08, p < 288 
0.001; all survived correction) and Old-across trials (AnG, β = 0.151, Z = 5.74, p < 0.001; LatIPS, β 289 
= 0.119, Z = 4.38, p < 0.001; pIPS, β = 0.148, Z = 5.01, p < 0.001; VOTC, β = 0.112, Z = 4.03, p < 290 
0.001; all survived correction). Specifically, stronger E1-E2 pattern similarity was associated with 291 
a higher probability of endorsing an E2 stimulus as ‘old.’ Critically, however, this effect was 292 
significantly stronger for Old-within trials than Old-across trials in LatIPS (Z = 3.18, p = 0.001), 293 
pIPS (Z = 4.34, p < 0.001), and VOTC (Z = 5.19, p < 0.001); for ANG, there was no significant 294 
difference between the trial types (Z = 0.43, p = 0.667). Thus, the relative recency of E1 had 295 
opposite effects on the influence of global similarity vs. same-stimulus similarity: when E1 296 
appeared in the same session as E2, the influence of same-stimulus similarity was relatively 297 
greater and the influence of global similarity was relatively lower; in contrast, when E1 appeared 298 
in a different session as E2 (further in the past), the influence of same-stimulus similarity was 299 
relatively lower and the influence of global similarity was relatively higher. This pattern of data 300 
indicates that a strong, ‘true’ memory can override the influence of global similarity; but, in the 301 
absence of a strong, ‘true’ memory, global similarity has a powerful influence on memory 302 
decisions. 303 
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 304 
Figure 3. Global similarity effect as a function of mnemonic history. a, Global similarity effect on 305 
memory decisions for Novel (E1) and Old (E2) trials. b, Global similarity and same-stimulus effects for Old 306 
(E2) trials, separated as a function of when E1 occurred. Old-within trials are E2 trials for which the 307 
corresponding E1 trial occurred within the same experimental session. Old-across trials are E2 trials for 308 
which the corresponding E1 trial occurred in a prior experimental session. Error bar denotes standard error. 309 

Activity patterns in parietal cortex reflect high-level / semantic content  310 

While the results above demonstrate that activity patterns in lateral parietal and VOTC ROIs 311 
reflected information that was relevant to memory decisions, they do not specify the nature of 312 
the information in these activity patterns. To address this, we conducted a final set of analyses 313 
in which we tested for relationships between activity patterns in each ROI and information 314 
content within different layers of a deep convolutional neural network26–29. Specifically, we 315 
passed the stimuli (natural scene images) through pre-trained VGG-16 model30 to obtain the 316 
activation pattern for each image at each processing layer. For this analysis, we used the 907 317 
images that were shared across all 8 subjects. Using the VGG-16 activation patterns, we 318 
constructed a representational dissimilarity matrix (RDM) by calculating pairwise Pearson 319 
correlation between obtained activation patterns for each layer of the model (RDMVGG-16). 320 
Similarly, for each subject, we then constructed RDMs for each ROI (RDMNeural) from fMRI 321 
activation patterns. We then performed Spearman correlations between RDMVGG-16 and RDMNeural 322 
in order to measure the degree to which representational structure in a given brain region 323 
resembled the representational structure in a given VGG-16 layer. Statistical significance at the 324 
group level was assessed using one-sided Wilcoxon signed-rank tests31. We hypothesized that 325 
representational structure in lateral parietal and VOTC regions would most closely resemble 326 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.16.603778doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603778
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 12 

representational structure in relatively late layers of VGG-16 (which are thought to reflect higher-327 
level, semantic content). 328 

Significant positive correlations between the RDMVGG-16 and the RDMNeural were observed across 329 
many ROIs. These correlations were observed for relatively late layers in AnG (layers 3-8, all rank 330 
sum ≥ 36, p’s < 0.004), LatIPS (layer 6-8, all rank sum ≥ 32, p’s < 0.027), pIPS (layer 4-8, all rank 331 
sum ≥ 34, p’s < 0.012), and VOTC (layer 3-8, all rank sum ≥ 35, p’s < 0.008). In contrast, for EVC, 332 
correlations were strongest in relatively early layers (layer 1-4, all rank sum ≥ 33, p’s < 0.020). 333 
Significant correlations were also observed in HPC (layer 3-8, all rank sum ≥ 36, p’s < 0.004), but 334 
not in M1. Of particular relevance, the similarity between VGG-16 and fMRI RDMs increased as a 335 
function of VGG-16 model layer in the lateral parietal and VOTC ROIs. Specifically, a Spearman 336 
correlation between layers (1 to 8) and RDM similarities revealed a significant positive 337 
relationship in AnG (rho = 0.64, p < 0.001), LatIPS (rho = 0.72, p < 0.001), pIPS (rho = 0.66, p < 338 
0.001), and VOTC (rho = 0.66, p < 0.001). A similar effect was observed in HPC (rho = 0.64, p < 339 
0.001). In contrast, there was a significant negative relationship between layers (1 to 8) and RDM 340 
similarities in EVC (rho = -0.84, p < 0.001). Together, these results demonstrate a clear distinction 341 
between the information tracked by early visual cortex versus lateral parietal and VOTC ROIs. Of 342 
central relevance, all of the ROIs in which we observed effects of global similarity on memory 343 
decisions (the parietal ROIs and VOTC) were characterized by a preference for higher-level, 344 
semantic information. This is consistent with the idea that global similarity effects on memory 345 
operated at a relatively high representational level. 346 

 347 

Figure 4. Similarity between fMRI and VGG-16 representations. a, A schematic of how 348 
representational dissimilarity matrices (RDMs) were calculated. Images that all subjects viewed 349 
in the fMRI experiment were passed to the deep neural network (DNN) model (VGG-16). Then the 350 
activation patterns of each DNN layer were extracted and pairwise distances (based on Pearson 351 
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correlations) between images were calculated to form the neural network RDMs. Similarly, fMRI 352 
activation patterns were extracted for each of the same images, separately for each ROI and 353 
subject, to form the fMRI RDMs. Spearman correlations were then calculated between the neural 354 
network RDMs and the fMRI RDMs to quantify the correspondence (similarity) in representations. 355 
b, Spearman's rank correlation coefficients between the neural network (VGG-16) RDMs and the 356 
fMRI RDMs. The neural network RDMs are separated by DNN layer, which represent different 357 
processing stages. Grey bars indicate the layers with significant RDM correlations between the 358 
neural network layer and fMRI ROI. Error bar denotes the standard error. 359 

Discussion 360 

Here, using data from a massive fMRI recognition memory study15, and inspired by classic 361 
theories in cognitive psychology7–9, we show that trial-by-trial recognition memory decisions are 362 
predicted by temporally-asymmetric neural measures of global similarity. Specifically, we found 363 
that the probability of endorsing a current memory probe as ‘old’ was positively related to the 364 
strength of global similarity to past events relative to future events. Notably, this relationship was 365 
present in regions of lateral parietal cortex that have consistently been implicated in episodic 366 
memory16–18. Importantly, however, the influence of global similarity on memory decisions 367 
depended on the mnemonic history of the probe: global similarity had the strongest influence 368 
when the probe was either novel or had initially been encoded at least a day in the past. Finally, 369 
using convolutional neural networks, we show that the brain regions in which global similarity 370 
predicted memory decisions are regions that preferentially express high-level semantic 371 
information, revealing a specific representational level at which similarity-based memory 372 
decisions operate. 373 

Isolating global similarity in time 374 

A unique and critical feature of our analysis approach is that we separately computed global 375 
similarity using experiences from the past and experiences in the future. Our motivation for this 376 
approach is that global similarity to future events serves as a baseline that captures time-377 
invariant similarity between a probe and other (normative or typical) experience. Thus, by 378 
subtracting future similarity from past similarity, we controlled for generic properties of probes 379 
(like typicality) that could lead to higher global similarity values and a higher likelihood of ‘old’ 380 
decisions. This simple step powerfully isolates the influence that past experience, per se, exerts 381 
on current memory decisions. However, our approach begs the question: is this form of baseline 382 
correction something the brain actually computes? Our position is that it is sub-optimal for 383 
memory decisions to rely on undifferentiated global similarity (this would lead to excessive false 384 
recognition). Thus, there is adaptive value in differentiating similarity that arises from recent 385 
experience from similarity based on a lifetime of experience. While it is obviously not possible 386 
that the brain computes similarity to future events (the specific analysis we employed), the brain 387 
could baseline recent experience against any sample of time (e.g., the very distant past) that 388 
captures ‘typical experience’. Thus, other variants of our analysis that used the distant past 389 
instead of the future would be conceptually equivalent. Here, however, we used future events as 390 
a baseline because it captured normative experience but is ‘completely free’ from episodic 391 
memory. 392 

In addition to comparing similarity to past vs. future events, we also sampled from different 393 
temporal windows in the past. This sampling of temporal windows was a unique feature of our 394 
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analysis approach that was only enabled by the use of a recognition memory task that spanned 395 
many fMRI sessions. By comparing global similarity across different temporal windows, we were 396 
able to test a straightforward, but important prediction: that events from the distant past exert 397 
relatively less influence on current memory decisions than events from the recent past. To the 398 
extent that older memories are weaker32, this represents another way to confirm that any 399 
observed relationship between global similarity and memory decisions is based on the influence 400 
of actual memories, as opposed to more generic properties of a probe. Notably, global matching 401 
models were originally developed and applied to explain memory decisions in paradigms where 402 
a single list of studied materials (e.g., words) was followed by a single test list (probes)5,9. In these 403 
paradigms, global matching models ignored the recency of past experience—instead, all items 404 
from the study list were given equal weight on memory decisions in the test list. In more recent 405 
work, forgetting or decay has been included as a parameter in global matching models33 in order 406 
to ‘de-weight’ older memories. That said, prior work has not explicitly considered or quantified 407 
the influence of past events on current decisions as a function of their temporal recency. 408 

Interestingly, we did not find evidence that past experience influenced current memory decisions 409 
in the immediate past condition (<1 minute in the past). We believe this null result should be 410 
interpreted with caution because the immediate past condition averaged over fewer trials (by 411 
definition, we were sampling a narrower time window) and it involved correlating trials from the 412 
same scan run as the probe, raising potential concern about non-independence (autocorrelation) 413 
between the probe trial and immediately preceding trials (though, in principle, the backward – 414 
forward global similarity measure should control for effects of autocorrelation). That said, a 415 
potential cognitive account of this null effect is that events from the immediate past are retained 416 
at a higher fidelity in memory and, therefore, it is easier to differentiate these events from a 417 
current memory probe. Thus, while the null effect for the immediate past condition represents 418 
an interesting observation that could be explored in a more targeted manner in future studies, 419 
this was not an a priori prediction and it is not relevant to our core conclusions. 420 

Implications for global matching models 421 

While our analytic approach was directly inspired by classic global matching models, it is 422 
important to emphasize that there are many variants of, and parameters within, these models. 423 
Here, our goal was not to systematically compare these variants and parameters to arrive at an 424 
optimal model; rather, we used a form of these models as a tool for identifying neural measures 425 
that reflected the influence of past experience on current memory decisions. However, one 426 
important test we did include was to compare global similarity (which averages across many 427 
trials) to ‘maximum similarity’—that is, the highest similarity between a probe and an event from 428 
the past. Critically, global similarity markedly outperformed maximum similarity in predicting 429 
trial-by-trial memory decisions, confirming that there is an advantage to considering all 430 
experiences from a given temporal window. 431 

Our analyses also reveal an important and striking caveat to the relationship between global 432 
similarity and memory decisions: this influence is substantially reduced when a probe’s prior 433 
experience (E1) is readily available in memory. Specifically, by focusing on probes that were 434 
veridically old (E2 trials), we were able to compare the influence of global similarity on memory 435 
decisions as a function of whether E1 occurred within the same experimental session or in an 436 
experimental session days to months ago. Whereas global similarity robustly predicted memory 437 
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decisions when E1 had been studied at least a day in the past (across sessions), there was no 438 
influence of global similarity when E1 had been studied in the same session (and E1 memory was 439 
presumably much stronger). This dissociation was paralleled by a dramatic and opposite shift in 440 
the influence of same-stimulus similarity (E1-E2 similarity) on memory decisions. Namely, when 441 
E1 occurred in the same session as E2, the relationship between E1-E2 similarity and memory 442 
decisions was much stronger compared to when E1 had occurred in a prior session. Taken 443 
together, this pattern of data reveals a clear tradeoff between global similarity and same-444 
stimulus similarity. When memory for a prior occurrence of an event (E1) is weak, then global 445 
similarity drives memory decisions, but when memory for a prior occurrence of an event is strong, 446 
same-stimulus similarity dominates. 447 

Brain regions in which global similarity predicted memory decisions 448 

Our a priori interest in lateral parietal cortex (LPC) was motivated by substantial evidence 449 
implicating LPC in recognition memory decisions18,34–37. However, understanding the role of LPC 450 
in memory has been a subject of much debate. One key line of evidence that has helped 451 
constrain theories of LPC contributions to memory is that LPC actively represents the contents 452 
of memories19–21,38. Our findings are consistent with this literature, but also constitute an 453 
important advance in that, here, we explicitly link LPC content representations—from specific 454 
temporal windows in the past—to trial-by-trial recognition memory decisions10–12. The fact that 455 
memory decisions were predicted by LPC content representations across a timescale of minutes 456 
is reminiscent of evidence—outside the domain of memory—which has described LPC as having 457 
a wide ‘temporal receptive window.’ Specifically, LPC—and angular gyrus, in particular—has 458 
been shown to integrate information across relatively long timescales—on the order of minutes. 459 
Thus, an account of the current findings that bridges across these literatures is that LPC is able 460 
to integrate content across relatively long timescales and these integrated content 461 
representations could potentially support everything from following a story39,40 to recognition 462 
memory decisions. 463 

The idea of temporal integration does raise an interesting question: does global similarity reflect 464 
a memory search process initiated by the probe, or does the brain compute a running average of 465 
experience (i.e., an integrated representation) that is automatically compared to the probe—or 466 
even serves as a prediction of upcoming experience? These ideas, which have a precedent in the 467 
decision-making literature41, could be tested by determining whether the relationship between 468 
global similarity and memory decisions is influenced by top-down (memory search) goals. For 469 
example, if the relationship between global similarity and memory decisions is influenced by 470 
instructions to search within specific temporal windows (e.g., “Did you see this stimulus 471 
yesterday?” vs. “Did you see this stimulus today?”), this would strongly favor a search account. 472 
In contrast, if the relationship between global similarity and memory decisions is not influenced 473 
by such goals (even if subjects can use these goals to constrain responses), then this would 474 
strongly favor a running average account. 475 

To more definitively and precisely establish content representations within the LPC regions that 476 
showed global similarity effects, we used VGG-16 (a deep convolutional neural network) to 477 
measure content effects across different network layers. We found that the regions that 478 
demonstrated relationships between global similarity and memory decisions (LPC and ventral 479 
temporal cortex) were characterized by markedly stronger representations of information at late 480 
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VGG-16 layers. These late layers are thought to represent high-level or semantic information, as 481 
opposed to early layers which capture lower-level visual properties. Indeed, the pattern of data 482 
in LPC and ventral temporal cortex contrasted sharply with early visual cortex, where early layers 483 
were preferentially represented. Thus, our findings not only implicate LPC in reflecting global 484 
similarity, but indicate that the specific representational level of similarity in these regions—and 485 
the representations that putatively drive memory decisions—is related to high-level semantic 486 
information42,43. 487 

Notably, we did not observe any relationship between global similarity in the hippocampus and 488 
recognition memory decisions. While there is a robust literature implicating the hippocampus in 489 
episodic memory, our analysis approach focused on global similarity averaged across many 490 
stimuli—a measure that is potentially misaligned with the computations the hippocampus 491 
supports. Indeed, prior evidence specifically highlights a dissociation between global similarity 492 
measures in neocortical areas versus more stimulus-specific representations in the 493 
hippocampus44. Interestingly, some variants of global matching models have applied nonlinear 494 
transformations (e.g., cubic or exponential) to global similarity values in order to more strongly 495 
weight the influence of highly similar matches4,6. While beyond the scope of the current 496 
manuscript, it is possible that with the right parameters, global matching models may better ‘fit’ 497 
the computations that the hippocampus supports. 498 

Conclusions 499 

Using an innovative analysis approach and a highly unique dataset, we show that trial-by-trial 500 
memory decisions are predicted by temporally-asymmetric neural measures of global similarity. 501 
These measures of global similarity were robustly expressed in regions of lateral parietal cortex 502 
that tracked high-level semantic content. Together, these results provide a new framework for 503 
measuring and conceptualizing the neural computations that support recognition memory. 504 
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Methods 505 

All analyses described here were based on a previously-published and extensively characterized 506 
dataset: the Natural Scenes Dataset (NSD)15. Relevant details, including unique statistical 507 
analyses, are described below. 508 

Subjects 509 

Eight subjects (six female, mean age = 26.5 years, range = 19 – 32 years) participated in the 510 
experiment. All subjects had normal or corrected-to-normal vision. Written consent was 511 
obtained from all subjects. The study was approved by the University of Minnesota Institutional 512 
Review Board. 513 

Stimuli and experimental procedure 514 

All stimuli used in the experiment were selected from Microsoft's COCO image database (Lin et 515 
al., 2014). A set of 73,000 colored images were selected from 80 categories, out of the 90 original 516 
COCO categories. Images were cropped into square (425×425 pixels). A screening procedure 517 
was implemented to remove duplicate, extremely similar, or potentially offensive images. In the 518 
experiment, subjects performed a long-term continuous recognition task. It was intended that 519 
each subject would view 10,000 unique images, each repeated 3 times, distributed over 40 fMRI 520 
sessions. Out of the 10,000 images, 1,000 of them were shared across all subjects and the 521 
remaining 9,000 were unique to each subject. During each trial, an image was presented on 522 
screen for 3 seconds, followed by a 1 second blank screen. Subjects were instructed to press 523 
one of two buttons to indicate whether the image had been presented at any prior point in the 524 
experiment (including in prior sessions; ‘old’) or was novel (‘new’). Thus, for every trial in the 525 
experiment, the current stimulus served as a ‘probe’ that was to-be-compared against all 526 
previously-studied stimuli. Subjects were additionally instructed to fixate a central dot 527 
throughout the entire task.  528 

Within each fMRI session, there were 12 runs of the continuous recognition task that displayed a 529 
total of 750 natural scene images. Each run lasted 300s and contained 75 trials. The first 3 and 530 
the last 4 trials were blank trials. For odd-numbered runs, the remaining 68 trials consisted of 63 531 
stimulus trials and 5 randomly-distributed blank trials. For even-numbered runs, the remaining 532 
68 trials consisted of 62 stimulus trials, 5 randomly-distributed blank trials, and one ‘fixed’ blank 533 
trial (trial #63). While each subject studied a (mostly) unique set of images, the distribution of 534 
image exposures (E1, E2, E3) across the 40 sessions had an identical structure for each subject 535 
in order to minimize differences in recognition memory performance. E1, E2, and E3 trials were 536 
distributed across all 40 sessions but the proportion of these trials changed across sessions: 537 
from E1 = 77.7%, E2 = 18.1%, and E3 = 4.2% in session 1 to E1 = 4.0%, E2 = 19.7%, and E3 = 76.3% 538 
in session 40. Within each session, for each E1 trial, there was a 43.8% (±18.4%) chance on 539 
average that the image would repeat within the session (E2); otherwise, corresponding E2 trials 540 
were uniformly distributed across the remaining sessions. Note: not all subjects finished all 40 541 
fMRI sessions (range was 30 – 40 sessions). To minimize across-subject differences, here we only 542 
analyzed data from the first 30 sessions for each subject. 543 
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MRI acquisition 544 

MRI data were collected at the Center for Magnetic Resonance Research at the University of 545 
Minnesota. Functional data and fieldmaps were collected using a 7T Siemens Magnetom 546 
passively shielded scanner with a 32 channel head coil. A gradient-echo EPI sequence at 1.8mm 547 
isotropic resolution with whole brain coverage was used to acquire functional data (84 axial 548 
slices, slice thickness = 1.8mm, slice gap = 0mm, field-of-view = 216mm × 216mm, phase-549 
encode direction A-P, matrix size = 120 × 120, TR = 1600ms, TE = 22.0ms, flip angle = 62°, echo 550 
spacing = 0.66ms, partial Fourier = 7/8, in-plane acceleration factor (iPAT) = 2, multiband 551 
acceleration factor = 3). Several dual-echo EPI fieldmaps were acquired periodically over each 552 
scan session (2.2mm × 2.2mm × 3.6mm resolution, TR = 510ms, TE1 = 8.16ms, TE2 = 9.18ms, flip 553 
angle = 40°, partial Fourier = 6/8). Anatomical images were collected using a 3T Siemens Prisma 554 
scanner with a standard 32 channel head coil. Several (6 – 10) whole brain T1-weighted scans 555 
were acquired for each subject across the experiment using an MPRAGE sequence (0.8mm 556 
isotropic resolution, TR = 2400ms, TE = 2.22ms, TI = 1000ms, flip angle = 8°, in-plane acceleration 557 
factor (iPAT = 2). In addition, several T2-weighted scans were obtained using a SPACE sequence 558 
(0.8mm isotropic resolution, TR = 3200ms, TE = 563ms, in-plane acceleration factor (iPAT) = 2 to 559 
facilitate medial temporal lobe subregion identification. 560 

MRI data processing 561 

All the pre-processed data were taken directly from the Natural Scenes Dataset; pre-processing 562 
steps are described in detail in the data paper15. In brief, T1-weighted and T2-weighted images 563 
were corrected for gradient nonlinearities using the Siemens gradient coefficient file from the 564 
scanner. All T1 and T2 images for a given subject were co-registered to the 1st T1 volume. The final 565 
version of T1 and T2 images were resampled from the co-registered data using cubic interpolation 566 
to 0.5mm isotropic resolution. Finally, the multiple images within each modality were averaged 567 
to improve signal to noise ratio. The averaged T1 image was processed by FreeSurfer 6.0.0 with -568 
hires option enabled. Manual edits were performed to improve the accuracy of surface 569 
reconstruction. Utilizing surfaces generated by FreeSurfer, several additional cortical surfaces 570 
between the pial and white matter were generated at 25%, 50%, and 75% cortical depth. These 571 
surfaces were used to map the volume data to surface space. For fMRI data, all pre-processing 572 
was performed in the subjects’ native space. Images were first corrected for slice-timing and 573 
upsampled to 1s. Then gradient nonlinearities, spatial distortion and motion correction were 574 
performed. fMRI images from later NSD sessions were co-registered to the mean fMRI volume of 575 
the first NSD session. All the spatial transformations were concatenated to allow a single step 576 
cubic interpolation. In this step, data was upsampled to 1mm isotropic resolution. 577 

To model the neural responses of each trial, a GLM was fitted for each NSD session using the 578 
package GLMsingle46. Optimal HRFs were chosen for each voxel from a library of HRFs to better 579 
compensate for differences in hemodynamic responses. Each trial was modeled separately in 580 
the model using the optimal HRF. The detailed procedure of this method is described in Allen et 581 
al.15 and the results denoted as 'b2' version in the paper. Models were fitted on the pre-processed 582 
fMRI data in 1mm functional space. The estimated single-trial betas were further resampled to 583 
each of the three cortical surface depths and averaged together using cubic interpolation. The 584 
result was then transformed to fsaverage space using nearest neighbor interpolation. This 585 
version of betas was used in analyses of cortical regions. 586 
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Regions of interest 587 

ROIs were defined in fsaverage space (cortical regions) and the subjects’ native 1mm functional 588 
space (hippocampus). For all cortical ROIs, we used the multi-modal parcellation (MMP1)47. 589 
Based on previous related studies10–12, we focused our main analyses on lateral parietal cortex 590 
and subdivided it into the angular gyrus (AnG), lateral intraparietal sulcus (LatIPS) and posterior 591 
intraparietal sulcus (pIPS) regions. We combined MMP1 label PGs and PGi regions to create AnG. 592 
For LatIPS and pIPS, we combined regions to match the definition used in Favila et al. 19 as closely 593 
as possible. Namely, the LatIPS consisted of MMP1 label IP1, IP2 and LIPd. The pIPS consisted 594 
of MMP1 labels IP0, IPS1, MIP, VIP and LIPv. In addition, we also included ventral 595 
occipitotemporal cortex (VOTC) and hippocampus (HPC), given the involvement of these two 596 
regions in memory process. The VOTC consisted of MMP1 labels FFC, VVC, PHA1, PHA2, PHA3, 597 
PIT, V8, VMV1, VMV2 and VMV3. The HPC used a manually traced segmentation in subject’s 598 
native space that combined subregions CA1, CA2, CA3, dentate gyrus and hippocampus tail. The 599 
early visual cortex (EVC, MMP1 label: V1) and premotor cortex (M1, MMP1 label: Area4) were also 600 
included as control ROIs. All ROIs were combined across the left and right hemispheres. 601 

Neural measures of global similarity 602 

To compute neural measures of global similarity, we compared the fMRI pattern evoked by a 603 
‘current stimulus’ (probe) to activity patterns evoked by past and future trials. However, because 604 
of the continuous recognition design, a given trial potentially served in all three roles (probe, past, 605 
future) as the analyses were iteratively performed (trial-by-trial). Thus, probes were not separate 606 
trials, but instead a designation of the trial’s role in a particular iteration of an analysis.  607 

For each probe, we constructed three temporal windows representing past experience: 608 
Immediate, Recent, and Distant. The immediate temporal window included the past 15 trials 609 
within the same scan run (mean temporal distance to current trial = 35.0 seconds, range: 4.0 610 
seconds to 68.0 seconds), the recent temporal window included trials from the past 3 scan runs 611 
(mean = 3.9 minutes, range: 2.8 minutes to 37.1 minutes), and the distant temporal window 612 
included trials from the prior fMRI session (mean = 7.3 days, range: 1.0 days to 28.0 days). Mirror-613 
reversed, but otherwise identical temporal windows were also constructed for future experience.  614 

Importantly, a given trial was only included as a probe if it allowed for all of the temporal windows 615 
to be constructed. Thus, probes never ‘occurred’ in the first or last session (session 1 or session 616 
30), in the first or last three runs within a session, or in the first 15 or last 15 trials in a run. For 617 
example, trial #14 in a given scan run was never included as a probe in any analysis because the 618 
immediate temporal window could not be constructed (there were not 15 preceding trials). Thus, 619 
even though each temporal window imposed different constraints, we only included a trial as a 620 
probe if it met the constraints for each of the temporal windows. However, even if a trial was 621 
excluded as a probe, it could serve within a temporal window. For example, trial #14 would be 622 
part of the recent past temporal window for trial #16, assuming it did not occur in the first or last 623 
session or the first or last three runs within a session. Trials were also excluded as probes if no 624 
behavioral response was made on that trial. 625 

For each probe, we computed the Pearson correlation between the activity pattern evoked on 626 
that trial and each trial within each temporal window from the past and future. These correlation 627 
values were then Fisher's Z-transformed and averaged within each temporal window, separately 628 
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for past and future. Finally, for each probe and each temporal window, we subtracted the 629 
‘forward’ similarity (similarity to future events) from the ‘backward’ similarity (similarity to past 630 
events). This yielded, for each trial and each temporal window (immediate, recent, distant), a 631 
difference score which served as the measure of global similarity. Thus, values of 0 represented 632 
no difference in mean similarity between past and future, values greater than 0 represented 633 
relatively higher similarity to the past, and values below 0 represented relatively higher similarity 634 
to the future. This entire process was separately performed for each ROI. Note: unless noted 635 
otherwise, a probe’s temporal window could potentially contain a repetition of the same 636 
stimulus as the probe. For example, if a probe was an E2 trial, the corresponding E1 trial might 637 
fall within one of the three temporal windows in the past. For the control analysis using maximal 638 
similarity, the criteria for selecting the probes were identical. However, instead of averaging 639 
similarity values across all trials in a temporal window, we identified the single trial, within each 640 
temporal window, with the highest similarity value. We then subtracted the highest value from 641 
each future temporal window from the highest value from the corresponding past temporal 642 
window. For analyses based on same-stimulus similarity, although temporal windows were not 643 
relevant, for consistency we retained the same criteria for selecting probes as in the global 644 
similarity and maximal similarity analyses, with the exception that only E2 trials (the 2nd 645 
presentation of a stimulus) served as probes. Same-stimulus similarity was calculated as the 646 
Fisher's Z-transformed Pearson correlation between the fMRI activation pattern evoked by the 647 
probe (E2) and the corresponding E1 trial. In this analysis, we did not subtract ‘forward’ pattern 648 
similarity (E2-E3 similarity) from ‘backward’ pattern similarity (E1-E2 similarity) because the 649 
distance between E1 and E2 was not matched with the distance between E2 and E3; moreover, 650 
this was not relevant, conceptually, for this analysis. 651 

Representational similarity matrices from fMRI and neural networks 652 

Separate representational dissimilarity matrices (RDMs) were constructed based on fMRI data 653 
and a deep convolutional neural network. These RDMs were restricted to images that were 654 
shared across all eight subjects and, to match the main analyses, only to images that were 655 
presented during the first 30 NSD sessions. This resulted in a total of 907 images that were used 656 
for the RDMs. For the fMRI-based RDMs, activity patterns for each trial within an ROI were 657 
extracted, then averaged across exposures for each image, resulting in a single, averaged pattern 658 
per image and ROI. Then, pairwise Pearson correlations (Fisher's Z transformed) were calculated 659 
for each pair of images, yielding an RDM for each ROI. For the neural network RDM, we utilized a 660 
pre-trained version of VGG-1630 included with the torchvision package 661 
(https://github.com/pytorch/vision). For each image, the same preprocessing steps (resizing, 662 
intensity normalization) were applied as used for the images in VGG16 training. The 663 
preprocessed images were passed to the model and, for each image, the unit activation at each 664 
processing layer served as the image ‘representation’. Specifically, eight layers of activation 665 
were used in the RDM similarity analyses, which corresponded to 5 pooling layers (2nd, 4th, 7th, 666 
10th, 13th) and three fully connected layers. These layers were labeled as layer 1 to 8 as they 667 
progressed in the processing hierarchy of VGG-16. Similar to the fMRI-based RDM, pairwise 668 
Pearson correlations (Fisher's Z transformed) were calculated for each pair of images to form 669 
RDMs for each layer. Spearman correlations were calculated between fMRI and VGG-16 based 670 
RDMs to quantify the similarity between the fMRI and neural network representations. 671 
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Statistical analyses 672 

Logistic mixed effects models 673 

Logistic mixed effects models were used to model the relationship between global similarity and 674 
subjects’ memory responses (old vs. new). The main model included global similarity from 3 675 
temporal windows (immediate, recent, distant; each window representing backward – forward 676 
similarity); an image’s exposure/repetition number (1st, 2nd, 3rd); and the interaction between 677 
these variables as fixed effects. In addition, to account for subjects’ potential response biases 678 
and session effects, the proportion of a subject's old responses within each temporal window 679 
and the NSD session number were added in the model as fixed effect confound regressors. 680 
Subject ID was included as a random effect with random intercept only. The model formula was: 681 
𝑀𝑒𝑚𝑜𝑟𝑦𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	~	𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦-𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦-𝑅𝑒𝑐𝑒𝑛𝑡 ∗682 
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦-𝐷𝑖𝑠𝑡𝑎𝑛𝑡 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 𝑝𝑂𝑙𝑑𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒-𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 +683 
𝑝𝑂𝑙𝑑𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒-𝑅𝑒𝑐𝑒𝑛𝑡 + 𝑝𝑂𝑙𝑑𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒-𝐷𝑖𝑠𝑡𝑎𝑛𝑡 + 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷 + (1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝐷).  684 

For the models examining maximum similarity, the formula was the same as the main model, 685 
except global similarity was replaced with the maximum pattern similarity (backward – forward) 686 
within each temporal window. 687 

To examine the effect of global similarity on memory decisions for Old vs. Novel probes, we 688 
constructed a new set of models that focused only on the recent temporal window and only 689 
included probes corresponding to E1 (1st exposure; Novel) or E2 (2nd exposure; Old). All E3 trials 690 
were excluded so that the number of Novel and Old trials was relatively balanced. Importantly, 691 
for this set of analyses we also excluded any E2 trials for which the corresponding E1 trial fell 692 
within the recent temporal window. The model formula was: 693 
𝑀𝑒𝑚𝑜𝑟𝑦𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	~	𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦-𝑅𝑒𝑐𝑒𝑛𝑡 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 	𝑝𝑂𝑙𝑑𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒-𝑅𝑒𝑐𝑒𝑛𝑡 +694 
𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷 + (1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝐷). 695 

To test whether the temporal lag between E1 and E2 influenced the relationship between global 696 
similarity and memory decisions, we constructed a separate set of models that only included 697 
probes corresponding to E2 trials, but with these trials split into two conditions based on when 698 
the prior exposure (E1) occurred. ‘Old-within’ corresponded to trials for which E1 occurred within 699 
the same experimental session as E2. ‘Old-across’ corresponded to trials for which E1 occurred 700 
in a prior experimental session. The model formula was: 701 
𝑀𝑒𝑚𝑜𝑟𝑦𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	~	𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦-𝑅𝑒𝑐𝑒𝑛𝑡 ∗ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 	𝑝𝑂𝑙𝑑𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒-𝑅𝑒𝑐𝑒𝑛𝑡 +702 
𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷 + (1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝐼𝐷).  703 

Finally, for the models that tested for relationships between same-stimulus similarity and 704 
memory decisions, the models were identical to the preceding set of models except that global 705 
similarity was replaced with same-stimulus similarity.  706 

All models were fit using the package lme4 (https://cran.r-707 
project.org/web/packages/lme4/index.html) in R. Likelihood ratio tests were used to determine 708 
the significance of fixed effects. For post-hoc tests of fixed effects and interactions, Wald test 709 
with asymptotic distribution was used with package emmeans (https://cran.r-710 
project.org/web/packages/emmeans/index.html) in R. 711 
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RDM similarity 712 

Spearman’s rank correlation was used to quantify the similarity between the fMRI and neural 713 
network (VGG-16) RDMs. The correlation coefficients were calculated within each subject. One-714 
sided Wilcoxon signed-rank tests were used to determine the significance at the group level31. 715 
For comparison of different VGG-16 layers, two-sided Wilcoxon signed-rank tests were used.  716 
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