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Abstract 13 

Human neuroimaging studies have shown that the contents of episodic memories are represented in 14 
distributed patterns of neural activity. However, these studies have mostly been limited to decoding simple, 15 
unidimensional properties of stimuli. Semantic encoding models, in contrast, offer a means for 16 
characterizing the rich, multidimensional information that comprises episodic memories. Here, we 17 
extensively sampled four human fMRI subjects to build semantic encoding models and then applied these 18 
models to reconstruct content from natural scene images as they were viewed and recalled from memory. 19 
First, we found that multidimensional semantic information was successfully reconstructed from activity 20 
patterns across visual and lateral parietal cortices, both when viewing scenes and when recalling them from 21 
memory. Second, whereas visual cortical reconstructions were much more accurate when images were 22 
viewed versus recalled from memory, lateral parietal reconstructions were comparably accurate across 23 
visual perception and memory. Third, by applying natural language processing methods to verbal recall 24 
data, we showed that fMRI-based reconstructions reliably matched subjects’ verbal descriptions of their 25 
memories. In fact, reconstructions from ventral temporal cortex more closely matched subjects’ own verbal 26 
recall than other subjects’ verbal recall of the same images. Fourth, encoding models reliably transferred 27 
across subjects: memories were successfully reconstructed using encoding models trained on data from 28 
entirely independent subjects. Together, these findings provide evidence for successful reconstructions of 29 
multidimensional and idiosyncratic memory representations and highlight the differential sensitivity of visual 30 
cortical and lateral parietal regions to information derived from the external visual environment versus 31 
internally-generated memories. 32 

 33 
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1. Introduction 35 

Neuroimaging studies of human episodic memory have found that the contents of memory retrieval are 36 
reflected in broadly distributed patterns of neural activity (Danker and Anderson 2010; Rissman and Wagner 37 
2012). While initial fMRI decoding studies of memory focused on relatively coarse information such as the 38 
visual category to which a stimulus belongs (Kuhl et al. 2011; Polyn 2005), more recent studies have 39 
demonstrated item- or event-specific representations (Favila et al. 2018; Lee et al. 2019; St-Laurent, Abdi, 40 
and Buchsbaum 2015; Xiao et al. 2017). However, these studies have overwhelmingly focused on decoding 41 
simple, unidimensional, and objective properties of stimuli. In contrast, real-world episodic memories are 42 
complex, multidimensional, and subjective (Cooper and Ritchey 2019; Richter et al. 2016). Notably, this 43 
limitation is often paralleled in behavioral measures of memory where simple, categorical expressions of 44 
retrieval success or accuracy are more common than the kinds of complex and idiosyncratic descriptions 45 
humans actually use to describe memories (Chen et al. 2017; Gilmore et al. 2021; Heusser, Fitzpatrick, 46 
and Manning 2021). 47 

A handful of recent fMRI studies have moved closer toward capturing the richness of memories using 48 
multidimensional measures. Naselaris et al. (2015) used an inverted encoding model method (Kay et al. 49 
2008; Naselaris et al. 2011) to reconstruct detailed visual features during mental imagery. Specifically, they 50 
mapped low-level visual features extracted from complex natural images to fMRI activity patterns elicited 51 
by visual perception. This mapping was then used to successfully predict visual features of independent 52 
natural images based on activity patterns evoked during mental imagery. Using a similar approach, Lee 53 
and Kuhl (2016) mapped distinct face components to patterns of fMRI activity and then used these 54 
mappings to reconstruct faces held in working memory. In another study, Bone, Ahmad, and Buchsbaum 55 
(2020) leveraged deep convolutional neural networks to extract visual and semantic features from complex 56 
natural images and demonstrated feature-specific reactivation in sensory and frontoparietal cortices during 57 
memory retrieval. Collectively, these studies provide important evidence that fine-grained, multidimensional 58 
content representations can be mapped to patterns of neural activity evoked during memory retrieval. 59 
Notably, however, none of these studies used behavioral measures of memory that matched the richness 60 
of the neural measures. 61 

Complementing the studies described above, other fMRI studies have embraced more complex behavioral 62 
measures of verbal recall (Chen et al. 2017; Gilmore et al. 2021; Heusser et al. 2021; Nguyen, Vanderwal, 63 
and Hasson 2019). For example, Chen et al. (2017) and Nguyen et al. (2019) applied latent semantic 64 
analysis (LSA) to verbal recall of movies and Heusser et al. (2021) used topic models to measure changes 65 
in verbal recall content over time. Each of these studies found that subject-specific measures of verbal 66 
recall content were related to measures of fMRI activity. For example, in Chen et al. (2017) and Nguyen et 67 
al. (2019), subjects with more similar recall—or more similar interpretations of the stimuli—showed greater 68 
fMRI pattern similarity. In Heusser et al. (2021), the specific time course of content changes during verbal 69 
recall was predicted by changes in fMRI activity. While these studies did not directly decode content 70 
information from fMRI data, they strongly attest to the feasibility and value of relating subject-specific verbal 71 
recall to patterns of neural activity. 72 

To the extent that multidimensional memory representations are captured by patterns of neural activity, an 73 
additional question is how these representations are distributed across cortical areas. While memory-based 74 
content representations are traditionally viewed as a re-expression of sensory cortical activity (Danker and 75 
Anderson 2010), there is now substantial evidence that the lateral parietal cortex (LPC)—a core component 76 
of the episodic memory network (Gilmore, Nelson, and McDermott 2015; Rugg and Vilberg 2013)—actively 77 
represents the content of retrieved memories (Kuhl and Chun 2014; St-Laurent et al. 2015; Xiao et al. 2017). 78 
Moreover, several recent findings specifically suggest that LPC contains the kinds of rich, multidimensional 79 
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information that is critical for episodic remembering (Bonnici et al. 2016; Cowen, Chun, and Kuhl 2014; 80 
Favila et al. 2018; Huth et al. 2016; Lee et al. 2019; Lee and Kuhl 2016; Yu and Shim 2017). There is also 81 
emerging evidence for a potential dissociation in content representations across LPC and sensory cortices: 82 
whereas content representations in sensory cortex are generally weaker during memory retrieval compared 83 
to perception, content representations in LPC may be as strong or stronger during memory retrieval 84 
compared to perception (Favila et al. 2018, 2020; Long and Kuhl 2021; Xiao et al. 2017). 85 

Here, we used semantic encoding models (Kay et al. 2008) and an extensive-sampling fMRI design 86 
(thousands of trials per subject) to map multidimensional semantic information from natural scene images 87 
to fMRI activity patterns. We then inverted these encoding models (Ester, Sprague, and Serences 2015; 88 
Kok, Rait, and Turk-Browne 2020; Sprague, Ester, and Serences 2016) to reconstruct semantic information 89 
as subjects viewed and recalled images from memory. These fMRI-based content reconstructions were 90 
directly compared to subjects’ verbal recall of the scenes using natural language processing methods. This 91 
allowed us to test not only whether fMRI-based reconstructions captured the objective content within scene 92 
images, but whether reconstructions matched subjective—and potentially idiosyncratic (subject-specific)—93 
details of how scenes were remembered. Additionally, by comparing reconstructions generated from 94 
different regions of visual cortex and LPC, we tested whether these regions differentially expressed content 95 
information during image viewing versus image recall. Finally, we tested whether semantic encoding 96 
models successfully generalized across subjects—a question that has important implications for leveraging 97 
data-rich models from extensively-sampled subjects. 98 

 99 

2. Materials and Methods 100 

2.1. Subjects 101 

Nineteen experimental sessions were collected from four human subjects (two females, age 23-30 years) 102 
from the University of Oregon community. Three subjects completed five sessions each and one subject 103 
completed four sessions. The sample size was modeled after Naselaris et al. (2015), which used a similar 104 
encoding model procedure for memory-based reconstructions. Despite the small sample size, each subject 105 
was sampled extensively across a large number of stimuli, a procedure which may have distinct advantages 106 
compared to sampling many individuals across a more limited number of stimuli (Naselaris, Allen, and Kay 107 
2021). All subjects were right-handed and reported normal or corrected-to-normal vision. Informed consent 108 
was obtained in accordance with procedures approved by the University of Oregon Institutional Review 109 
Board. 110 

 111 

2.2. Stimuli 112 

Two sets of image stimuli were prepared: one for use in a recognition memory task and one for use in a 113 
recall memory task. The recognition set contained a total of 5000 complex scene images, which were 114 
selected from the Microsoft COCO dataset (http://cocodataset.org/, Lin et al., 2015). These images depict 115 
complex everyday scenes of common objects from 91 categories in their natural context. Each image in 116 
the dataset is annotated with five written descriptions from independent human subjects. These descriptions 117 
capture the main content of the images and were used, in the present study, as information channels for 118 
the inverted encoding model. For each subject and each session, 680 images were randomly selected 119 
(without replacement) from the recognition set. Of these, 600 were studied prior to the fMRI session and 120 
served as ‘old’ items in the recognition test. The remaining 80 images served as novel foils (‘new’ items) in 121 
the recognition test. The recall set consisted of a total of 100 images, also drawn from the Microsoft COCO 122 
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dataset. Each image was randomly paired with a texture (taken from the internet), creating a set of paired 123 
associates. The textures served as cues during the cued recall task (described below). For each session, 124 
20 of the paired associates were studied and tested. The same 20 pairs were used in each session for each 125 
subject in order to facilitate across-subject analyses. 126 

 127 

2.3. Experimental design and procedures 128 

Overview of paradigm. Each session of the experiment consisted of two separate parts which were 129 
conducted across consecutive days (Fig. 1A). On Day 1 of each session, subjects were overtrained on 20 130 
paired associates (textures + scene images) and were familiarized with a separate 600 scene images (from 131 
the recognition set). On Day 2 of each session, subjects first completed additional training on the paired 132 
associates from Day 1 and additional familiarization with images from the recognition set. Then, during fMRI 133 
scanning subjects completed two phases: (1) a covert cued recall phase in which the 20 textures were 134 
repeatedly used to test memory for the associated scenes, and (2) a recognition memory phase which 135 
included the 600 familiarized images + 80 lures. Finally, subjects exited the scanner and completed an 136 
overt (verbal) cued recall test for the 20 paired associates. This two-day procedure constituted a single 137 
session and each subject completed 4-5 sessions. In order to minimize across-session memory 138 
interference, there was a delay of at least 7 days between sessions, for each subject. 139 

 140 

Paired associate training. Paired associate training was conducted at the beginning of Day 1 (4-5 rounds) 141 
and the beginning of Day 2 (1 round). Each round of paired associate training consisted of three distinct 142 
phases in the following sequence: study, vividness test, study, vividness test, forced choice associative 143 
memory test. In the study phases, subjects saw and deliberately encoded each of the 20 paired associates, 144 
one pair at a time. On each trial, the cue (texture) was first presented for 1 s, followed by a fixation cross 145 
for 0.5 s, and then the target image (scene) for 2 s. Another fixation cross was presented for 1 s at the end 146 
of each trial (before the start of the next trial). In the vividness test phases, each cue was presented for 1 s 147 
followed by a 3-point vividness scale (“1 2 3”) and subjects reported, via button press, the vividness with 148 
which they could recall the target image (1-Can’t remember, 2-Remember, and 3-Vividly remember). The 149 
vividness report was self-paced. After responding, feedback was given by presenting the target image alone 150 
on the screen for 1.5 s. A fixation cross was presented for 0.5 s in between trials. In the forced choice 151 
associative memory test, a cue image was first presented for 1 s and then, after a fixation cross (0.5 s), 152 
four scene images appeared on the screen. The four images included the target (correct) scene along with 153 
three scenes randomly selected from the remaining 19 scenes in the set of paired associates studied in the 154 
current session. Subjects were instructed to select the scene image that had been paired with the cue by 155 
pressing one of four keys. There was no time limit to respond. After subjects made a selection, feedback 156 
was provided. If the correct image was selected, a green fixation cross was presented (0.5 s) followed by 157 
the correct image presented in the center of the screen (1 s). If an incorrect image was selected, a red 158 
fixation cross was presented (0.5 s) followed by the correct image (1 s) presented in the center of the screen. 159 
Finally, a black fixation cross was presented for 1 s (until the start of the next trial). For each session, 160 
subjects were required to reach at least 95% accuracy for two consecutive rounds on Day 1 before 161 
proceeding to the Image Familiarization Phase. Using this performance criterion, all subjects completed 5 162 
paired associate training rounds on Day 1 for each session, with the exception of one subject that reached 163 
the criterion by the 4th round for one of the sessions. 164 

 165 

 166 
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Image Familiarization. For each session, Image Familiarization was conducted on Day 1 and Day 2, 167 
immediately after the paired associate training rounds. During each familiarization phase subjects saw all 168 
600 scene images presented in the center of the screen, one at a time and in random order, and distributed 169 
across five blocks (120 images/block). Subjects were instructed to try their best to remember each image 170 
for a later memory test (the recognition memory test). No behavioral responses were made. On Day 1, each 171 
image was presented for 1 s with a 0.5 s fixation cross in between trials. On Day 2, each image was 172 
presented for 0.6 s with a 0.4 s fixation point in between trials.  173 

 174 

Scanned Cued Recall. For each session, subjects completed two fMRI runs of a covert cued recall task 175 
(Fig. 1C), each lasting 6 min and 16 s. As during the paired associate training rounds, subjects were shown 176 
cues (textures) and indicated the vividness with which they could recall the corresponding scene image 177 
using a 3-point scale. Each run consisted of 40 recall trials (2 trials per association per run), with the order 178 
of trials in each run pseudorandomized with the constraint that the same association was not tested 179 
consecutively. Every trial started with a cue image centrally presented over a white background for 0.5 s. 180 
Next, a question mark appeared in the center of the screen (3.5 s), prompting subjects to make their 181 
vividness response using a button box. Finally, a fixation cross was presented either for 4 s (75% of trials) 182 
or 8 s (25% of trials). 183 

 184 

Scanned Recognition Memory Test. Following the cued recall task, subjects completed the recognition 185 
memory test (Fig. 1D) which consisted of eight runs, each lasting 6 min and 20 s. Each run contained 75 186 
old images and 10 novel images presented in random order, for a total of 680 images across the 8 runs. 187 
Each trial began with the presentation of a scene in the center of the screen (1 s). Next, a question mark (3 188 
s) prompted subjects to make an old/new decision by pressing one of two keys on a button box. After a 189 
small number of the recognition trials (6/85), a fixation cross was presented for 4 s. The rationale for 190 
including a disproportionate number of old images (600 out of 680) was because fMRI data from the 191 
recognition memory test was used to train encoding models applied to the cued recall task and we sought 192 
to increase the extent to which these models were trained on ‘memory data’ (old trials). Specifically, recent 193 
evidence indicates systematic differences in the spatial activity patterns associated with memory-based 194 
content representations compared to perception-based content representations (Favila et al. 2020). Thus, 195 
our intuition—though not a point we directly tested—was that transfer from the recognition to recall trials 196 
might benefit from the recognition trials having a high percentage of old trials. Additionally, the recognition 197 
memory test served as a cover task to help keep subjects engaged while viewing hundreds of images per 198 
session. 199 

 200 

Post-scan Cued Recall. After subjects exited the scanner, they completed a final cued recall test (Fig. 1E). 201 
However, in contrast to the prior cued recall tests which recorded covert (vividness) memory judgments, 202 
here subjects were asked to explicitly describe their memories. On each trial, subjects were shown a cue 203 
(texture) and were asked to type a sentence to describe the content of the associated scene image. 204 
Specifically, the instructions asked subjects to “write a complete but simple sentence” that should “include 205 
adjectives if possible, describe the main characters, the setting, or the relation of the objects in the image, 206 
and try to be concise”. After subjects typed their response on the computer screen, they pressed enter to 207 
advance to the next trial. No time limit was given and each of the 20 associations from the current session 208 
was tested once, in random order. 209 
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Fig. 1. Experimental procedure. A. Overview of experimental phases. Each subject completed 4 to 5 experimental 210 
sessions. Each experimental session involved two consecutive days of tasks. On Day 1, subjects learned 20 211 
associations between cues (textures) and associates (scenes) via a paired associate training procedure and were also 212 
familiarized with 600 additional scene images (image familiarization). No fMRI scanning was conducted on Day 1. On 213 
Day 2, subjects completed additional paired associate training and image familiarization before entering the scanner. 214 
During scanning, subjects completed a covert cued-recall test of the cue-associate pairs followed by a recognition 215 
memory test. After exiting the scanner, subjects completed an overt cued-recall test for the cue-associate pairs. B. The 216 
paired associate training included three phases: study, vividness test, and forced choice test. During study, subjects 217 
were shown textures followed by scenes and attempted to learn these associations. During the vividness test, subjects 218 
were shown textures and then indicated the vividness with which they were able to recall the corresponding scene. The 219 
correct scene was then shown as feedback. During the forced choice test, subjects were shown a texture followed by 220 
four previously-studied scenes and were asked to select the corresponding scene. C. In the scanned (covert) cued-221 
recall phase, subjects were shown textures and rated the vividness with which they could recall the corresponding 222 
scene (as in the vividness test, but without feedback). D. In the scanned recognition memory test, subjects made 223 
old/new judgements for scenes (that did not include the scenes from the paired associate training). The sole purpose 224 
of the recognition memory test was to train the semantic encoding models. E. In the final (overt) recall test, subjects 225 
were shown textures and typed a sentence to describe the content of the corresponding scene.  226 
 

2.4. fMRI data acquisition 227 

fMRI scanning was conducted on a Siemens 3 T Skyra scanner at the Robert and Beverly Lewis Center 228 
for NeuroImaging at the University of Oregon. Before the functional imaging, a whole-brain high-resolution 229 
anatomical image was collected for each subject and each session using a T1-weighted protocol (grid size 230 
256 × 256; 176 sagittal slices; voxel size 1 × 1 × 1 mm). Whole-brain functional images were collected using 231 
a T2*-weighted multi-band accelerated EPI sequence (TR = 2s; TE = 25ms; flip angle = 90°; 72 horizontal 232 
slices; grid size 104 × 104; voxel size 2 × 2 × 2 mm). Each cued recall scan consisted of 188 volumes. 233 
Each recognition memory test scan consisted of 190 volumes. 234 

 235 

2.5. fMRI data preprocessing 236 

MRI data were first converted to Brain Imaging Data Structure (BIDS) format using in-house scripts. MRIQC 237 
v0.15.1 (Esteban et al. 2017) was used for preliminary data quality assessment. We applied a threshold 238 

Day 1 Day 2

Paired Associate
 Training 

Image 
Familiarization

Recognition
 Memory Test

Cued Recall
(covert)

Cued Recall
(overt)

fMRI scanning

A

Paired Associate
 Training

Image 
Familiarization

B
Paired Associate Training

Study Vividness Test Forced choice test

1    2    3

feedbackcue (texture) associate (scene)

Cued Recall (covert) Recognition Memory Test

vividness rating

?

Cued Recall (overt)

Type response

“An AirFrance 
jet airplane 

flying in the sky”

Old/New? Old/New? Old/New?

vividness rating choose associate

C D E

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.09.523096doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523096
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

that no more than 20% of TRs in any scan run could exceed a framewise displacement of 0.3 mm; however, 239 
no scan runs were excluded using this threshold. Preprocessing was performed using FMRIPrep v1.5.4 240 
(RRID:SCR_016216) (Esteban et al., 2019), a Nipype (RRID:SCR_002502) based tool, with the default 241 
processing steps. Each structural image was corrected for intensity non-uniformity and skull-stripped. Brain 242 
surfaces were reconstructed using recon-all from FreeSurfer v6.0.1. Spatial normalization to the ICBM 152 243 
Nonlinear Asymmetrical template version 2009c was performed through nonlinear registration with the 244 
antsRegistration tool of ANTs v2.1.0, using brain-extracted versions of both T1w volume and template. 245 
Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was 246 
performed on the brain-extracted T1w using FAST (FSL v5.0.9). 247 

Functional data were slice time corrected, motion corrected, and corrected for field distortion. This was 248 
followed by co-registration to the corresponding T1w using boundary-based registration with six degrees of 249 
freedom using bbregister (FreeSurfer v6.0.1). Motion correcting transformations, BOLD-to-T1w 250 
transformation and T1w-to-template (MNI) warp were concatenated and applied in a single step using 251 
antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. We then applied a high pass filter using 252 
a cutoff period of 100 s. Finally, the preprocessed fMRI data were smoothed by a 1.6 mm full-width-half-253 
maximum Gaussian kernel with FSL's SUSAN (Smoothing over Univalue Segment Assimilating Nucleus) 254 
(Smith and Brady 1997). Grand-mean intensity normalization of each functional image volume was 255 
performed by a single multiplicative factor. Confounding regressors including framewise displacement (FD), 256 
global signal, white matter, and cerebrospinal fluid signals were generated for each volume. Within-subject 257 
reconstructions were conducted in subjects’ native EPI space, and across-subject reconstructions were 258 
conducted in the standard space. 259 

 260 

2.6. Regions of interest 261 

Regions of interest (ROIs) included four subregions of the posterior lateral parietal cortex (LPC), the ventral 262 
temporal cortex (VTC), and the occipital temporal cortex (OTC) (Fig. 4A). ROIs were defined using 263 
FreeSurfer’s Destrieux atlas (the following label numbers refer to Simple_surface_labels2009.txt). The 264 
subregions of LPC consisted of the angular gyrus (ANG, #25), supramarginal gyrus (SMG, #26), superior 265 
parietal lobule (SPL, #27), and intraparietal sulcus (IPS, #57). The VTC ROI was comprised of regions 21, 266 
23, 51, 52, 61, and 62. The OTC ROI was comprised of regions 2, 19, 43, 58, and 60. The ROIs were co-267 
registered to the functional images and further masked by subject-specific whole-brain masks generated 268 
from functional images to exclude areas where signal dropout occurred. All ROIs contained brain regions 269 
from both hemispheres (mean number of voxels for each ROI: 1816 in ANG; 1942 in SMG; 1594 in SPL; 270 
1318 in IPS; 4459 in VTC; 3854 in OTC).  271 

 272 

2.7. Single-item response estimation 273 

For each session, separate general linear models (GLM) were created for each of the 20 images during the 274 
cued recall task and each of the 680 images during the recognition memory test. A least-square single 275 
method was used for each item, where the given item was modeled with a single regressor and all the 276 
remaining items were modeled with another regressor. The presentation of each stimulus was modeled as 277 
an impulse and convolved with a canonical hemodynamic response function (double gamma). The GLM 278 
included head-motion parameters (six rotation and translation head movement estimates) and nuisance 279 
regressors marking outlier TRs (FD > 0.3 mm from previous TR) as confounding regressors. The t-statistic 280 
values associated with each image were used in the semantic encoding model to increase reliability by 281 
noise normalization (Walther et al. 2016). 282 
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 283 

2.8. Image content reconstruction 284 

To represent the content of each scene image, we used the Word2vec embedding algorithm. This algorithm 285 
transforms single words into 300-dimensional vectors (word embeddings). Similarities/distances between 286 
these vectors reflect the similarity of the corresponding words. In our analysis, we took advantage of the 287 
annotation captions (five captions for each image) from the COCO dataset. After a standard preprocessing 288 
procedure that included filtering of stop words and tokenization, we obtained the word embeddings for the 289 
critical words in the annotation captions. We calculated the mean vector, across the five captions, to 290 
represent the content in each image (Fig. 2A). We then applied principal component analysis (PCA) on the 291 
entire pool of 300-dimensional word embeddings for the 5100 images (i.e., the full set of recognition + recall 292 
images). The first 30 components, which explained 68.59% of the total variance were used as information 293 
channels in the semantic encoding model. We refer to these 30 components as semantic component scores. 294 
The goal of reconstruction analyses was to accurately predict the semantic component scores. 295 

Reconstructions of semantic component scores were generated using a cross-validation approach. fMRI 296 
activation patterns evoked during the recognition trials were used as training patterns to estimate the 297 
relationship between fMRI activity patterns and semantic component scores (Fig. 2B). We modeled the 298 
response in each voxel as a weighted sum of the information channels (i.e., the 30 semantic components):  299 

 300 

𝐵! = 𝑊𝐶! 301 

 302 

where 𝐵! (n images × m voxels) is the activation patterns of voxels (t maps) during the recognition memory 303 
test, 𝐶! (n images × k components) is the modeled response of each component, or information channel, 304 
on each trained image, and W (k components × m voxels) is a weight matrix quantifying the contribution of 305 
each information channel to each voxel (Fig. 2B). We can solve for W using the following ordinary least-306 
squares linear regression: 307 

 308 

𝑊% =	𝐵!𝐶!"(𝐶!𝐶!")#! 309 

 310 

Given the estimated weights within an ROI (𝑊% ) and a novel pattern of activation (𝐵$) from the recognition 311 
trials (recognition-based reconstruction) or the recall trials (recall-based reconstruction), we can compute 312 
an estimate of the semantic component scores by inverting the model (Fig. 2C): 313 

	314 
𝐶)$ =	 (𝑊% "𝑊%)#!𝑊% "𝐵$ 315 

 316 

Recognition-based reconstruction. Separately for each subject, N-fold cross-validation was performed on 317 
recognition data where N equals the number of scanning runs pooled across all of the sessions that each 318 
subject completed (i.e., 40 runs for the three subjects that completed 5 sessions each and 32 runs for the 319 
remaining subject that completed 4 sessions). For each fold, the activation patterns from N-1 runs (i.e., 39 320 
or 31 runs) were used as training patterns and those of the remaining run served as the testing set (i.e., the 321 
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trials for which the semantic component scores were predicted). In this manner, all trials iteratively 322 
contributed to both model training and model testing. 323 

 324 

Recall-based reconstruction. To predict semantic component scores during recall trials, activation patterns 325 
from recognition runs were used as training data and the estimated weights based on the recognition trials 326 
(training data) were then applied to the recall trials (testing data) to predict the semantic component scores 327 
for each of the recalled images. Recall-based reconstructions were performed in two ways: within-subjects 328 
and across-subjects. For within-subject reconstructions, all of the recognition runs across all sessions for a 329 
given subject were used as the training data and the testing data were all of the recall runs across all 330 
sessions for that same subject. For across-subject reconstructions, all of the recognition runs across all 331 
sessions from N-1 subjects were used as the training data and the testing data were all of the recall runs 332 
across all sessions from the held-out subject. 333 

 

 
Fig. 2. Schematic overview of the semantic content reconstruction analysis. A. Generating semantic component scores. 334 
Annotations from the COCO image dataset were used as semantic descriptions of the images. After filtering out the 335 
stop words, the captions were transformed into 300-dimensional vectors using the Word2Vec embedding method. PCA 336 
was run on all of the 5100 candidate images, and the first 30 principle components (hereinafter, semantic components) 337 
were extracted so that the content of each image could be expressed as a weighted sum of these components.  B. 338 
Training the encoding model. Linear regression was used to estimate a model that learned the mapping between the 339 
semantic component scores of the trained images (i.e., the training set) and the fMRI activation patterns they evoked. 340 
C. Testing the encoding model. The regression weights obtained from the training set were applied to an independent 341 
set of images (i.e., the testing set) to predict semantic component scores. Encoding models were tested using cued 342 
recall trials (shown) or recognition trials (not shown). D. Assessing reconstruction accuracy. The accuracy of 343 
reconstruction for each image was determined by computing the Pearson correlations between the predicted semantic 344 
component scores and the actual semantic component scores. Actual semantic component scores were either based 345 
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on the COCO dataset captions (left side of boxes) or the verbal recall responses subjects generated in the final cued-346 
recall test (right side of boxes). Correlations were separately computed for ‘matching’ images (within-item similarity) 347 
and non-matching images (across-item similarity). Reconstructions were considered accurate if within-item similarity 348 
was higher than across-item similarity. 349 
 350 

2.9. Reconstruction accuracy 351 

For all reconstruction analyses, accuracy was based on Fisher-transformed Pearson correlations between 352 
predicted (reconstructed) and ‘actual’ semantic component scores. ‘Actual’ semantic component scores 353 
were either based on COCO annotations (which were derived from an independent set of subjects) or from 354 
subjects’ verbal recall responses (which were collected in the final cued recall test, after fMRI scanning). 355 
Unless otherwise noted, successful reconstruction accuracy was defined as greater within-item correlations 356 
than across-item correlations (Fig. 2D). Within-item correlations refer to correlations between reconstructed 357 
and actual semantic component scores corresponding to the same image. Across-item correlations refer to 358 
the mean of correlations between reconstructed and actual semantic component scores corresponding to 359 
different images [e.g., r(reconstructed scores for image 1, actual scores for image 2)]. Across-item 360 
correlations were always restricted to images from the same fMRI session. Additionally, within-item 361 
correlations for recognition-based reconstructions were only compared against across-item correlations for 362 
other recognition-based reconstructions; likewise, within-item correlations for recall-based reconstructions 363 
were only compared against across-item correlations for other recall-based reconstructions. Group-level 364 
results were obtained by first averaging correlations within sessions for each subject and then across 365 
sessions and subjects. 366 

 367 

2.10. Statistical analysis 368 

Unless otherwise stated, mixed-effects models were used to test the reconstruction accuracy of correlation 369 
difference measures. Linear mixed-effects models were implemented with lme4 in R 3.6.3, fitted using 370 
restricted maximum likelihood. To determine whether within-item correlations differed from across-item 371 
correlations, we used the likelihood ratio test to compare models with (full model) and without (null model) 372 
the predictor of interest (i.e., correlation type: within-item correlation or across-item correlation). Subject 373 
and session numbers were included as random factors. For statistical tests of reconstruction accuracy 374 
within individual ROIs, uncorrected p values are reported. In tests that compared reconstruction accuracies 375 
across ROIs or conditions, mixed-effects models were used with the subject number and session number 376 
included as random factors.  377 

 378 

3. Results 379 
 380 

3.1.  Behavioral performance 381 

Group-level results were obtained by first averaging data within sessions for each subject and then across 382 
sessions and subjects. On Day 1 of each session, subjects studied 20 paired associates (textures with 383 
scenes) across 4-5 rounds. For each round, memory was tested via forced-choice associative memory and 384 
cued recall tasks. In the forced-choice associative memory test, subjects were asked to select the target 385 
image for each cue from a set of three image choices. Performance was high across all rounds (Round 1: 386 
97.89% ± 4.19%; Round 2: 98.95% ± 2.09%; Round 3: 98.68% ± 2.27%; Round 4: 98.68% ± 2.81%; Round 387 
5: 97.81% ± 3.15%; Fig. 3A). In the cued recall tasks, subjects reported how vividly they were able to recall 388 
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the target image on a 3-point scale. The mean percentage of “Vividly remember” responses (the highest 389 
rating) was 49.74% ± 22.96% (SD) in round 1, 93.16% ± 10.23% in round 2, 99.34% ± 1.83% in round 3, 390 
99.74% ± 0.79% in round 4, and 100% ± 0.00% in round 5 (mean rescaled responses are shown in Fig. 391 
3B). Critically, performance remained high for both tasks at Day 2 as evidenced by performance on the 392 
forced-choice associate memory test that occurred just prior to scanning (Round 6: 98.95% ± 2.09%; Fig. 393 
3A) and the rate of “Vividly remember” responses during the cued recall tasks that occurred just prior to 394 
scanning (Round 6: 98.16% ± 3.89%) and during scanning (scan: 98.55% ± 6.00%) (mean rescaled 395 
responses are shown in Fig. 3B)  396 

After exiting the scanner, subjects completed a final post-scan cued recall task during which they generated 397 
a sentence to describe the content in each target image. These subject-specific recall-based descriptions 398 
were transformed to 300 dimensional vectors (word embeddings) using Word2Vec. The COCO annotations 399 
for each of these images were also transformed to word embeddings using Word2Vec. We then calculated 400 
the Pearson correlations between the word embeddings from subjects’ verbal recall and those from the 401 
independent COCO annotations. As shown in Fig. 3C, each subject exhibited markedly higher within-item 402 
correlations (i.e., correlations between verbal recall vectors and COCO annotation vectors corresponding 403 
to the same image) than across-item correlations (i.e., correlations between recall vectors and annotation 404 
vectors corresponding to different images). These results confirm that subjects were able to accurately 405 
describe images from memory and also validate our approach of characterizing verbal recall through word 406 
embeddings. 407 

 

 
Fig. 3. Behavioral performance across the entire experimental procedure. A. Forced-choice test accuracy was 408 
measured during the paired associate training rounds on Days 1 and 2. The first five rounds (r1–r5) were completed 409 
during Day 1. The 6th round (r6) was completed during Day 2 (just prior to fMRI scanning). Chance accuracy = 25%. B.  410 
Vividness ratings were made during the first five paired associate training rounds on Day 1 (r1–r5), during the 6th paired 411 
associate training round on Day 2 (r6), and during the covert cued recall test during fMRI scanning on Day 2 (scan). 412 
Ratings were rescaled from 1, 2, 3 to 0, 0.5, 1.0 with 0 corresponding to the lowest vividness rating and 1.0 to the 413 
highest vividness rating. For A and B, data are represented by boxplots with dots representing data from individual 414 
sessions with each subject represented by a different shape. Note: for many of the rounds performance was at ceiling 415 
and boxplots are therefore compressed. C. Verbal recall performance from the overt cued recall test following scanning 416 
on Day 2. For each subject (Sub. 1–4) and each recalled image, Pearson correlations were computed between the 30 417 
semantic components generated from subjects’ verbal responses and semantic components generated from the 418 
independent COCO annotations of (i) the same images (within-item similarity) or (ii) other images from the recall set 419 
(across-item similarity). For within-item similarity, each dot represents the within-item correlation for a single recall trial 420 
to its corresponding COCO annotations. For across-item similarity, each dot represents the mean z-transformed 421 
correlation between a single recall trial and all non-corresponding COCO annotations.  422 
 423 

For the recognition memory test conducted during scanning, mean recognition sensitivity (d’) across 424 
sessions and subjects was 1.98 ± 0.52. The mean hit rate for studied images was 84.63% ± 11.51%, and 425 
the mean correct rejection rate for new images was 76.97% ± 12.48%. A mixed effects model including 426 
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subject and session numbers as random factors showed that the hit rate was significantly higher than the 427 
false alarm rate (c21 = 89.96, p < 0.0001, β = 0.616, SE = 0.030).  428 

 429 

3.2.  Reconstruction of content from viewed images 430 

For fMRI analyses, we first tested for successful reconstruction of image content from activity patterns 431 
evoked in visual and lateral parietal cortices during the recognition memory task (when images were visually 432 
presented on the screen). Image content was defined by 30 semantic component scores derived from the 433 
300-dimensional Word2Vec vectors from the COCO annotations (Fig. 2). The 30 semantic components 434 
explained 68.59% of the variance in COCO annotations for the images used in the study. As with the 435 
behavioral analyses above, we assessed reconstruction accuracy by comparing within-item vs. across-item 436 
similarity. Here, however, within-item similarity was defined as the Fisher-transformed Pearson correlation 437 
between the reconstructed component scores for a given image (as predicted from the inverted fMRI 438 
encoding model) and the ‘actual’ semantic component scores for that image (derived from COCO 439 
annotations). Across-item similarity was defined as the mean Fisher-transformed Pearson correlation 440 
between predicted component scores for a given image and actual component scores for different images 441 
(from the same session). Reconstruction of content information was determined to be successful if within-442 
item similarity was greater than across-item similarity, as determined by mixed-effects linear models which 443 
included subject and session numbers as random factors. Consistent with our previous studies (Cowen et 444 
al. 2014; Lee and Kuhl 2016), robust reconstruction accuracies were obtained from visual regions (VTC: 445 
c21 = 3024.1, p < 0.0001, β = 0.136, SE = 0.002; OTC: c21 = 3785.6, p < 0.0001, β = 0.146, SE = 0.002) as 446 
well as ANG and other lateral parietal ROIs (ANG: c21 = 754.4, β = 0.063, SE = 0.002; SMG: c21 = 277.8, 447 
β = 0.040, SE = 0.002; SPL: c21 = 624.0, β = 0.059, SE = 0.002; IPS: c21 = 774.5, β = 0.066, SE = 0.002; 448 
p values < 0.0001) (Fig. 4A,B). However, reconstruction accuracies sharply varied across ROIs (main effect 449 
of ROI from repeated-measures ANOVA: F5,90 = 350.69, p < 0.0001, 𝜂2p = 0.95), with higher accuracies in 450 
the visual ROIs compared to the parietal ROIs (p’s < 0.0001 for all paired-samples t-tests comparing the 451 
VTC and OTC ROIs to each of the lateral parietal ROIs).    452 
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Fig. 4. Accuracy for fMRI-based reconstructions of semantic component scores. A. Anatomical regions of interest 453 
(ROIs), visualized on the inflated surface of an averaged template brain (from FreeSurfer). Top: left lateral view. Bottom: 454 
left medial view. B. Mean reconstruction accuracies of semantic component scores for each ROI based on encoding 455 
models trained and tested on recognition trials. Independent COCO annotations were used to define the ‘actual’ content 456 
of each image and semantic component scores from these annotations were then compared to semantic component 457 
scores reconstructed from fMRI activity patterns during the covert cued recall phase. Accuracy is expressed as within-458 
item correlations – across-item correlations, with positive values (i.e., > 0) reflecting successful (item-specific) 459 
reconstructions. Accuracy was significantly above chance for all ROIs. C. As in B, but based on encoding models 460 
trained on recognition trials and tested on recall trials. Accuracy was significantly above chance for all ROIs. D. 461 
Difference in reconstruction accuracy for recognition vs. recall trials (B vs. C). Positive values reflect higher accuracy 462 
for recognition trials than recall trials. Only VTC an OTC exhibited significantly greater accuracy for recognition-based 463 
reconstructions than recall-based reconstructions. Notes: dots represent data from individual sessions with each 464 
subject represented by a different shape; *** p < 0.001. 465 
 

3.3.  Reconstruction of image content from cued recall task 466 

Next, we extended our method to test for content reconstruction for images retrieved from memory during 467 
the cued recall task. Critically, and in contrast to recognition-based reconstructions for which the to-be-468 
reconstructed image was visually present, here the to-be-reconstructed image was visually absent 469 
(subjects were only shown the texture cues) thus requiring top-down retrieval of the target image. For this 470 
analysis, we trained the semantic encoding model with ‘old’ images from the recognition set (exploiting the 471 
large number of recognition trials) but tested it on images from the cued recall task. As with the recognition-472 
based reconstructions, evidence for successful recall-based reconstructions was obtained if within-item 473 
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similarity (correlations between the semantic component scores predicted from the inverted encoding 474 
model and the ‘target’ semantic component scores) were reliably higher than across-item correlations. As 475 
described in the following sections, we used several approaches for defining the ‘target’ semantic 476 
component scores. 477 

As a first step, we defined target semantic component scores based on the COCO annotations (as in the 478 
preceding section which tested for reconstruction accuracy during the recognition memory task). Successful 479 
recall-based content reconstruction was observed across each of the visual and parietal regions (VTC: c21 480 
= 83.9, p < 0.0001, β = 0.083, SE = 0.009; OTC: c21 = 24.6, p < 0.0001, β = 0.043, SE = 0.009; ANG: c21 481 
= 26.6, p < 0.0001, β = 0.049, SE = 0.009; SMG: c21 = 26.0, p = 0.0001, β = 0.048, SE = 0.009; SPL: c21 = 482 
24.5, p < 0.0001, β = 0.047, SE = 0.009; IPS: c21 = 32.6, p < 0.0001, β = 0.056, SE = 0.010; Fig. 4C). 483 
Accuracy significantly varied across ROIs (main effect of ROI: F5,90 = 3.46, p = 0.007, 𝜂2p = 0.16), with 484 
accuracy numerically highest in VTC. To provide a sense of the subjective accuracy of recall-based 485 
reconstructions, Fig. 5 shows examples of words that were most similar to the reconstructed semantic 486 
components (generated using the “most_similar” function of Word2Vec) for images with varying degrees of 487 
recall-based reconstruction accuracy. Specifically, we pooled the reconstructed semantic component 488 
scores in VTC across all subjects and sessions, and then rank ordered these reconstructed scores by 489 
accuracy (match to the target scores). Fig. 5 shows examples of the “most similar” words for reconstructions 490 
that were in the top 1%, top 25%, and top 50%. 491 

While all ROIs exhibited above-chance content reconstruction for both recognition-based and recall-based 492 
reconstructions, the difference between recognition- versus recall-based reconstructions markedly varied 493 
across ROIs, as reflected by an interaction between trial type (recognition, recall) and ROI (F5,90 = 24.88, p 494 
< 0.0001, 𝜂2p = 0.58). Whereas content reconstruction accuracy was much higher for recognition than recall 495 
in VTC (c21 = 15.6, p < 0.0001, β = 0.052, SE = 0.012) and OTC (c21 = 50.7, p < 0.0001, β = 0.103, SE = 496 
0.010), reconstruction accuracy in parietal regions did not significantly differ for recognition versus recall 497 
trials (ANG: c21 = 2.16, β = 0.014, SE = 0.009; SMG: c21 = 0.58, β = -0.008, SE = 0.011; SPL: c21 = 1.49, β 498 
= 0.012, SE = 0.010; IPS: c21 = 0.74, β = 0.010, SE = 0.011; p values > 0.140) (Fig. 4D). Thus, whereas 499 
VTC and OTC exhibited a clear ‘preference’ for images that were visually present (recognition trials), 500 
reconstructions from parietal regions were of comparable success when images were visually present 501 
(recognition trials) or entirely driven by memory (recall trials). 502 
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Fig. 5. Examples of reconstructed image content from VTC. (Left) Rank of the reconstruction accuracy pooled over all 503 
subjects and sessions. (Middle left) Example images being recalled. (Middle right) The top 5 most similar words and 504 
word combinations describing the semantic component scores reconstructed from VTC. The words were generated by 505 
the Word2Vec default ‘most_similar’ function. (Right) Similarity scores between vectors corresponding to the content 506 
reconstructed from VTC and vectors of the Word2Vec most similar words.  507 
 

3.4. Similarity between reconstructed content and verbal descriptions of memories 508 

In the preceding analyses, the target semantic content of each image was defined by image annotations 509 
that are part of the COCO image dataset. We next tested the degree to which semantic component scores 510 
reconstructed from the inverted fMRI encoding models (measured during the scanned cued recall task) 511 
matched the semantic component scores derived from subjects’ own verbal memory of each image 512 
(measured during the post test) (Fig. 6A). As described for behavioral analysis of the verbal recall data 513 
(Fig. 3C), each subject’s verbal recall of each image was translated into 30 semantic component scores. 514 
These target component scores could then be readily compared to (correlated with) the semantic 515 
component scores predicted from the inverted fMRI encoding models. Again, we found higher within- than 516 
across-item correlations in each of the visual and parietal ROIs (Fig. 6B) (VTC: c21 = 49.7, p < 0.0001, β = 517 
0.087, SE = 0.012; OTC: c21 = 21.2, p < 0.0001, β = 0.055, SE = 0.011; ANG: c21 = 14.1, p < 0.0001, β = 518 
0.050, SE = 0.013; SMG: c21 = 12.3, p = 0.0004, β = 0.047, SE = 0.001; SPL: c21 = 7.4, p = 0.007, β = 519 
0.038, SE = 0.014; IPS: c21 = 7.4, p = 0.007, β = 0.036, SE = 0.013). Accuracy varied across ROIs (main 520 
effect of ROI: F5,90 = 2.75, p = 0.024, 𝜂2p = 0.13), with accuracy numerically highest in VTC. These results 521 
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confirm that the reconstructed semantic information from LPC and visual regions matched subjects’ verbal 522 
descriptions of their memories.   523 

While the preceding analysis confirms a match between verbal recall and reconstructed semantic 524 
component scores, an even stricter test is whether the semantic component scores reconstructed from a 525 
given subject's fMRI data more closely resembled the semantic component scores from that subject’s verbal 526 
recall compared to semantic component scores from other subjects’ verbal recall of the exact same images. 527 
To test this, we first calculated the Pearson correlations between the semantic component scores 528 
reconstructed from a given subject’s inverted fMRI encoding model and the corresponding semantic 529 
component scores derived from that same subject’s verbal recall (within-subject similarity). We then 530 
compared this within-subject similarity to across-subject similarity: the correlations between a given 531 
subject’s reconstructed semantic component scores and the corresponding semantic component scores 532 
derived from different subjects’ verbal recall of the same images. It is important to emphasize that both of 533 
these measures were within-item correlations (i.e., they relate to the exact same images). If within-subject 534 
similarity exceeds across-subject similarity, this provides evidence for a subject-specific correspondence 535 
between fMRI-based reconstructions and verbal recall. 536 

For each subject, session, and ROI we compared within-subject similarity to across-subject similarity in 537 
order to generate an accuracy score for image. This image-specific accuracy score reflected the percentage 538 
of comparisons for which within-subject correlations were greater than across-subject correlations. For 539 
example, for a given image recalled by subject 1, the fMRI-based reconstructed semantic component 540 
scores would be correlated with the semantic component scores derived from verbal recall from subject 1 541 
(within-subject similarity) and with the semantic component scores derived from verbal recall from subjects 542 
2, 3 and 4 (across-subject similarity). If, for example, the within-subject correlation [r(1,1)] was greater than 543 
two of the three possible across-subject correlations [r(1,2), r(1,3), r(1,4)], this would correspond to an 544 
accuracy of 66.66% for that image. In this manner, the mean accuracy was computed for each subject, 545 
session, and ROI. Chance-level accuracy was 50% (i.e., by chance, within-subject similarity should exceed 546 
across-subject similarity 50% of the time). Strikingly, we observed above-chance accuracy—i.e., subject-547 
specific reconstructions—in VTC (54.39%, t(18) = 2.90, p = 0.009, Cohen’s d = 0.66; Fig. 6B)—which was 548 
also the ROI that exhibited the highest recall-based reconstruction accuracy in each of the preceding 549 
analyses. Accuracy did not exceed chance in any of the other ROIs [OTC: M = 49.21%, t(18) = -0.36, p = 550 
0.720, Cohen’s d = -0.08; ANG: M = 47.76%, t(18) = -0.96, p = 0.348, Cohen’s d = -0.22; SMG: M = 51.36%, 551 
t(18) = 0.67, p = 0.512, Cohen’s d = 0.20; SPL: M = 50.40%, t(18) = 0.24, p = 0.816, Cohen’s d = 0.05; IPS: 552 
M = 48.11%, t(18) = -1.04, p = 0.310, Cohen’s d = -0.24; Fig. 6B].  553 
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Fig. 6. Correspondence between semantic component scores reconstructed from fMRI vs. derived from verbal recall. 554 
A. Schematic of the analysis. For each to-be-recalled image for each subject, semantic component scores were 555 
reconstructed (predicted) from fMRI activity patterns using semantic encoding models trained on the recognition trials 556 
and tested on the recall trials. These reconstructed semantic component scores were then correlated with semantic 557 
component scores derived from subjects’ verbal recall of the same image (measured during the post-scan overt cued 558 
recall test). B. Reconstruction accuracy as reflected by the difference between within-item vs. across-item correlations, 559 
with all correlations performed within-subject. Reconstruction accuracy was significantly above chance for all ROIs. C. 560 
Subject-specific reconstructions. To test for subject-specific (idiosyncratic) reconstructions, the semantic component 561 
scores reconstructed from one subject’s fMRI data were correlated with semantic component scores generated from (i) 562 
the same subject’s verbal recall data (e.g., Sub. 1 -> Sub. 1, black arrow, in A) and (ii) other subjects’ verbal recall data 563 
of the exact same images (e.g., Sub- 1 -> Sub. 2, grey arrows, in A). Reconstructions were considered to contain 564 
subject-specific information within-subject correlations were higher than the across-subject correlations. Data shown 565 
reflect the mean percentage of within-subject correlations that exceeded across-subject correlations. Accuracy was 566 
significantly above chance (dash line, 50%) only for VTC. Notes: dots represent data from individual sessions with each 567 
subject represented by a different shape; ** p < 0.01, *** p < 0.001.  568 
 

3.5.  Across-subject reconstruction of recalled memories 569 

Finally, we tested whether information ‘learned’ by the semantic encoding models (i.e., the mappings 570 
between voxel activity patterns and semantic component scores) successfully transferred across 571 
individuals. More specifically, we tested whether the contents of memory recall for each subject could be 572 
reconstructed using encoding models trained on data from independent subjects. To test this, we iteratively 573 
trained semantic encoding models using the recognition data from three of the four subjects and tested the 574 
model on recall trials from the held-out subject. That is, the weight matrix that was applied to each subject’s 575 
fMRI activity patterns from the recall trials was entirely derived from independent subjects. We first tested 576 
content reconstruction accuracy by correlating the reconstructed component scores with component scores 577 
derived from the COCO annotations (as in Fig. 4C). Again, within-item similarity was compared against 578 
across-item similarity. Successful reconstruction (greater within-item similarity than across-item similarity) 579 
was observed in ANG (c21 = 13.6, p = 0.0002, β = 0.033, SE = 0.009), SPL (c21 = 5.5, p = 0.020, β = 0.022, 580 
SE = 0.010), IPS (c21 = 5.4, p = 0.020, β = 0.022, SE = 0.009), VTC (c21 = 37.8, p < 0.0001, β = 0.056, SE 581 
= 0.009), and OTC (c21 = 10.5, p = 0.001, β = 0.027, SE = 0.008) (Fig. 7A).  582 
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We next replicated this analysis with the only difference being that reconstructed component scores were 583 
correlated with component scores derived from each subject’s (own) verbal recall (as in Fig. 6B). Again, 584 
within-item similarity was greater than across-item similarity in ANG (c21 = 15.7, p < 0.0001, β = 0.049, SE 585 
= 0.012), SPL (c21 = 6.4, p = 0.011, β = 0.032, SE = 0.013), IPS (c21 = 7.7, p = 0.005, β = 0.034, SE = 586 
0.012), VTC (c21 = 24.1, p < 0.0001, β = 0.056, SE = 0.011), and OTC (c21 = 6.4, p = 0.011, β = 0.031, SE 587 
= 0.012) (Fig. 7B). These findings provide evidence that, across subjects, the mappings between semantic 588 
content and fMRI activity patterns were shared to a degree that encoding models could be transferred to 589 
independent subjects to reconstruct the contents of memory recall. 590 

 

 
Fig. 7. Across-subject application of the semantic encoding models. For these analyses, the semantic encoding model 591 
was iteratively trained on recognition trials from 3 of the 4 subjects and then tested on recall trials from the held-out 592 
subject. A. Mean accuracy of reconstructed semantic component scores for each ROI based on comparison to 593 
semantic component scores derived from COCO annotations (within-item correlations – across-item correlations). B. 594 
Mean reconstruction accuracy for each ROI based on comparison to semantic component scores derived from verbal 595 
recall (within-item correlations – across-item correlations). For B, although the training/testing of the encoding models 596 
was performed across subjects, the covert recall trials used for reconstructing the semantic component scores and the 597 
verbal recall trials used for testing accuracy were always within the same subject. Notes: dots represent data from 598 
individual sessions with each subject represented by a different shape; ** p < 0.05, ** p < 0.01, *** p < 0.001, two tailed. 599 
 600 

4. Discussion 601 

In the current study, we extracted high-level semantic features from complex natural images and modeled 602 
relationships between these semantic features and fMRI activity patterns using voxelwise encoding models. 603 
By inverting the encoding models, we tested whether the semantic content of retrieved memories could be 604 
reconstructed from evoked fMRI activity patterns. Using a multiple-session training procedure, we show 605 
that semantic content was successfully reconstructed from fMRI activity patterns in lateral parietal and 606 
visual cortices. Notably, however, reconstruction accuracy differed across these regions according to 607 
whether images were visually present (during recognition) or cued by arbitrarily-associated abstract images 608 
(during recall). Whereas reconstruction accuracy in visual cortex was markedly lower when images were 609 
recalled from memory (recall trials) compared to when they were visually present (recognition trials), lateral 610 
parietal regions were relatively insensitive to this difference between trial types. Separately, by applying 611 
natural language processing methods to subjects’ verbal recall data and projecting these recall data into 612 
the same feature space as the fMRI reconstructions, we also established that fMRI-based reconstructions 613 
reliably matched subjects’ verbal recall data. In fact, reconstructions from ventral temporal cortex reflected 614 
idiosyncratic differences in how different subjects remembered the exact same image. Finally, we show 615 
that encoding models trained on a subset of subjects reliably transferred to held-out subjects, indicating 616 
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that the mapping between fMRI activity patterns and semantic content was consistent enough across 617 
subjects to allow for across-subject reconstructions. Collectively, these findings provide important evidence 618 
for multidimensional memory representations in lateral parietal and visual cortices and establish the 619 
relevance of these neural representations to complex behavioral expressions of memory recall. 620 

 621 

4.1. Reconstruction and recall of multidimensional memory representations 622 

Numerous prior fMRI studies have demonstrated content-sensitivity of fMRI activity patterns in visual and 623 
lateral parietal cortices during memory retrieval (Favila et al. 2018; Kuhl et al. 2011; Kuhl and Chun 2014; 624 
Lee et al. 2019; Polyn 2005; St-Laurent et al. 2015). However, the majority of this evidence comes from 625 
studies that have measured an objective, single stimulus property or dimension. For example, many studies 626 
have tested for decoding of visual category information (Kuhl et al. 2011; Polyn 2005). Others have 627 
demonstrated an item-specific ‘match’ between fMRI activity patterns elicited during memory encoding and 628 
those elicited during memory retrieval (Favila et al. 2018; Kuhl and Chun 2014; Lee et al. 2019; St-Laurent 629 
et al. 2015). While the current findings also constitute evidence for item-specific representations (in that our 630 
analyses revealed differences between individual scene images), the key difference in the current study is 631 
that item-specific representations were ‘built’ by predicting and combining constituent features (Lee and 632 
Kuhl 2016; Naselaris et al. 2011). In fact, reconstructions were based on encoding models that were not 633 
trained on the to-be-reconstructed images (Brouwer and Heeger 2009). Thus, the stimulus-specific 634 
representations observed here cannot be explained by subjects generating verbal labels or stimulus-635 
specific tags during encoding and then re-expressing that label/tag during recall. 636 

The motivation for establishing multidimensional neural representations of memories is that these 637 
measures have the potential to capture the richness, subjectivity, and idioscynracies with which real world 638 
memories are recalled. Critically, however, validation of these neural representations requires behavioral 639 
expressions of memory that also capture the same richness, subjectivity, and idiosyncracies. Our solution 640 
to this problem was to use natural language processing methods that allowed our fMRI and behavioral data 641 
to be described using the same feature dimensions. Considering the behavioral recall data alone, text 642 
embeddings were highly sensitive to differences between images (Fig. 3C) validating the use of this method 643 
to characterize verbal recall data (Heusser et al. 2021; Song, Finn, and Rosenberg 2021). Moreover, across 644 
visual and lateral parietal ROIs, there was strong correspondence between fMRI-based reconstructions 645 
and subjects’ verbal recall (Fig. 6B), demonstrating that the multidimensional fMRI reconstructions aligned 646 
with the multidimensional expressions of verbal recall. Most strikingly, reconstructions generated from 647 
ventral temporal cortex were significantly more similar to subjects’ own verbal recall compared to other 648 
subjects’ verbal recall of exactly the same images (Fig. 6C). In other words, ventral temporal cortex 649 
reconstructions reflected subjective or idiosyncratic differences in how scene images were remembered. 650 
This effect is particularly notable when considering that there were no experimental pressures for subjects 651 
to use unique language or to differentiate their responses from other subjects. Thus, these methods may 652 
be even more sensitive to subjective/idiosyncratic information in experimental contexts where there are 653 
factors that promote memory differentiation (Favila, Chanales, and Kuhl 2016; Hulbert and Norman 2015; 654 
Kim, Norman, and Turk-Browne 2017). 655 

 656 

4.2. Reconstructions in lateral parietal cortex versus visual cortical areas 657 

Not surprisingly, reconstructions from visual cortical areas (VTC, OTC) were markedly higher when images 658 
were visually present (recognition trials) compared to when they were visually absent (recall trials). In 659 
contrast, this fundamental distinction between trial types did not significantly influence reconstruction 660 
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accuracy in LPC regions. Notably, several recent studies have specifically shown that, in contrast to visual 661 
cortical regions, LPC representations are stronger during memory recall compared to memory encoding or 662 
perception (Akrami et al. 2018; Favila et al. 2018, 2020; Long and Kuhl 2021; Xiao et al. 2017). While a 663 
definitive account of why LPC is biased towards memory-based information is not yet clear (Favila et al. 664 
2020), the current findings provide additional support for a relative preference toward memory-based 665 
information in LPC. Here, however, we did not observe stronger (more accurate) LPC reconstructions 666 
during recall compared to recognition. That said, it is important to emphasize that recognition-based 667 
reconstructions were generated from models trained and tested on recognition trials whereas recall-based 668 
reconstructions were generated from models trained on recognition trials but tested on recall trials. Thus, a 669 
direct comparison of reconstruction accuracy for recall versus recognition trials is not an apples-to-apples 670 
comparison. Instead, the critical statistical comparison is the relative sensitivity of visual versus LPC regions 671 
to the difference in trial types. Indeed, this interaction was highly significant (Fig. 4D). 672 

An obvious question raised by the current findings is whether recall reconstructions would be significantly 673 
better (in LPC and possibly VTC, as well) if the encoding model had been trained only on recall trials (Chen 674 
et al. 2017). In our study, this was not feasible because the number of recall trials was relatively small (far 675 
fewer than the number of recognition trials). At a practical level, recall trials are also much harder to include 676 
in large numbers because they depend on pre-training the paired associations (e.g., we used an extensive 677 
training procedure to ensure successful, vivid recall; Fig. 1). However, in an effort to address the potential 678 
concern of poor transfer from ‘pure perception’ trials to recall trials, we opted to pre-expose subjects to 679 
images in the recognition set such that the images used for model training were ‘old’ images. The sole 680 
rationale for the pre-exposure phase was that the semantic encoding models might better transfer to recall 681 
trials if the training trials had some memory component. Specifically, we reasoned that the representational 682 
format of a recall trial might be more similar to an ‘old’ recognition trial than to an entirely novel stimulus. 683 
While this thinking was informed by recent findings (Akrami et al. 2018; Favila et al. 2018, 2020; Long and 684 
Kuhl 2021; Xiao et al. 2017), it was not our intention—nor are we able—to test whether this design feature 685 
actually improved model transfer. That said, it does represent an interesting question that could be tested 686 
empirically in future studies. 687 

While we observed evidence for idiosyncratic (subject-specific) relationships between fMRI-based 688 
reconstructions and verbal recall when considering reconstructions from VTC, we did not observe 689 
significant relationships for any of the LPC ROIs. On the one hand, this null result for LPC regions is 690 
surprising in light of evidence that memory reactivation in LPC has been associated with subjective qualities 691 
of memory recall (Bone et al. 2020; Johnson et al. 2015; Kuhl and Chun 2014; Richter et al. 2016). However, 692 
across analyses, reconstruction accuracy was higher in VTC than in LPC ROIs, meaning there simply may 693 
have been better sensitivity within VTC to subtle differences in within-subject versus across-subject 694 
comparisons. As described above, it is possible that training the encoding models on recall trials (as 695 
opposed to recognition trials) might boost performance in LPC ROIs and thereby improve sensitivity to 696 
subject-specific differences. Indeed, we view this as a very interesting and reasonable possibility. 697 
Alternatively, it is possible that LPC preferentially expresses representational formats of retrieved memories 698 
that are relatively shared across subjects (Chen et al., 2018). Given that both of these are viable possibilities, 699 
we would caution against drawing conclusions based on the absence of significant subject-specific effects 700 
in the LPC ROIs. Instead, we view the significant results in VTC as a proof of concept that our 701 
methodological approach can be used to identify subject-specific idiosyncrasies in how complex images 702 
are remembered. 703 

 704 

4.3. Semantic encoding models generalize across subjects 705 
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Although we deliberately used an extensive-sampling procedure to maximize the amount of within-subject 706 
training data available for the encoding models, we also show that encoding models transferred quite well 707 
across subjects. Specifically, training encoding models using recognition trials from N-1 subjects allowed 708 
for successful recall-based reconstruction in held out subjects (Fig. 7). This successful transfer across 709 
subjects indicates that the mapping between semantic components and fMRI activity patterns was shared—710 
at least to some degree—across different individuals. Importantly, this shared mapping between semantic 711 
information and fMRI activity patterns is not at odds with our finding (or the idea) of idiosyncratic memory 712 
representations. For example, consider two individuals that had breakfast together. These individuals may 713 
have a common neural representation of the concept of coffee, and each of them may have had coffee for 714 
breakfast. However, when remembering breakfast, these individuals may differ in the degree to which the 715 
concept of coffee is a salient component of their memory and, therefore, in the degree to which the neural 716 
representation of coffee is activated when they remember breakfast. Thus, leveraging shared mappings 717 
(i.e., encoding models trained across different individuals) need not come at the expense of identifying 718 
idiosyncratic ways in which individuals perceive or remember their experiences (Finn et al. 2018, 2020). 719 

More generally, the success of the across-subject encoding models has two main implications. First, this 720 
finding adds to a growing body of evidence that, even for complex and naturalistic stimuli (e.g., movies and 721 
narratives), there is a surprising degree of consistency across individuals in how these stimuli are 722 
represented in patterns of neural activity (Chen et al. 2017; Finn et al. 2018; Hasson et al. 2004; Zadbood 723 
et al. 2017). Second, leveraging across-subject encoding models could have substantial practical—and 724 
theoretical—advantages. For example, as noted above, it was not feasible in our experimental paradigm 725 
for each subject to learn and recall thousands of different scenes (due to the training time it would require 726 
and the deterioration in memory performance that would be expected with such a large memory set). 727 
However, it is much more feasible to obtain thousands of recall trials across subjects. Thus, some analyses 728 
which are impractical—or that would be data starved—within subjects, might become feasible if across-729 
subject models are leveraged. Moreover, a single well-powered training data set could potentially be applied 730 
to many distinct test sets. Finally, it is also notable that here, we only aligned across-subject data in 731 
anatomical space. Additional gains in across-subject transfer may well be realized by aligning data in a 732 
common high-dimensional functional space (Chen et al. 2015; Haxby et al. 2011, 2020). 733 

 734 

4.4. Conclusions 735 

To summarize, we used inverted semantic encoding models applied to fMRI data to reconstruct 736 
multidimensional content in natural scene images as they were viewed and recalled from memory. We 737 
found that visual and lateral parietal cortices supported successful reconstructions both when viewing and 738 
recalling images. However, whereas lateral parietal reconstructions were relatively insensitive to whether 739 
images were viewed or recalled from memory, visual cortical reconstructions were markedly lower for 740 
recalled versus viewed images. Additionally, by applying natural language processing methods to 741 
behavioral measures of memory recall, we show that fMRI-based reconstructions of recalled content 742 
matched subjects’ verbal recall and that fMRI-based reconstructions even reflected idiosyncratic qualities 743 
of subjects’ recall. Finally, we show that semantic encoding models reliably transferred across individuals, 744 
allowing for successful reconstruction of a given subject’s memory using encoding models trained on 745 
entirely different individuals. Collectively, these findings provide important evidence characterizing 746 
multidimensional memory representations and linking their neural and behavioral expressions. 747 

 748 

 749 
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