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ABSTRACT  

 

Neuroimaging studies of human memory have consistently found that univariate responses in 
parietal cortex track episodic experience with stimuli (whether stimuli are ‘old’ or ‘new’). More 
recently, pattern-based fMRI studies have shown that parietal cortex also carries information 
about the semantic content of remembered experiences. However, it is not well understood how 
memory-based and content-based signals are integrated within parietal cortex. Here, we used 
voxel-wise encoding models and a recognition memory task to predict the fMRI activity patterns 
evoked by complex natural scene images based on (a) the episodic history and (b) the semantic 
content of each image. Models were generated and compared across distinct subregions of 
parietal cortex and for occipitotemporal cortex. We show that parietal and occipitotemporal 
regions each encode memory and content information, but they differ in how they combine this 
information. Among parietal subregions, angular gyrus was characterized by robust and 
overlapping effects of memory and content. Moreover, subject-specific semantic tuning 
functions revealed that successful recognition shifted the amplitude of tuning functions in 
angular gyrus but did not change the selectivity of tuning. In other words, effects of memory and 
content were additive in angular gyrus. This pattern of data contrasted with occipitotemporal 
cortex where memory and content effects were interactive: memory effects were preferentially 
expressed by voxels tuned to the content of a remembered image. Collectively, these findings 
provide unique insight into how parietal cortex combines information about episodic memory 
and semantic content. 
 
 
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.25.513263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.25.513263
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

INTRODUCTION  

 
Neuroimaging studies have consistently implicated parietal cortex in episodic memory, leading 
to a number of theoretical accounts of these findings (Cabeza et al., 2008; Ritchey & Cooper, 
2020; Rugg & King, 2018; Sestieri et al., 2017; Vilberg & Rugg, 2008; Wagner et al., 2005). 
Pattern-based fMRI studies have critically informed these accounts by showing that parietal 
cortex also carries information about the content of what is being remembered. The angular 
gyrus has received particular attention given that univariate activation in angular gyrus relates to 
the success, precision, and vividness of memory retrieval (Kuhl & Chun, 2014; Richter et al., 
2016; Wagner et al., 2005) and activity patterns in angular gyrus also carry detailed information 
about the content of remembered events (Baldassano et al., 2017; Bonnici et al., 2016; Favila et 
al., 2018; Kuhl et al., 2013; Kuhl & Chun, 2014; Lee et al., 2018). However, the way in which 
parietal cortex combines memory-related and content-related information remains an important, 

open question (Humphreys et al., 2021; Renoult et al., 2019). In particular, at a fine-grained level, 
it is unclear to what degree parietal memory effects and content effects are overlapping and/or 
interactive. For example, are voxels that carry memory signals segregated from those that carry 
content information? Or, does successful remembering alter the ‘sharpness’ of content 
representations (Schultz et al., 2019; Woolnough et al., 2020)? 

In considering the questions above, occipitotemporal cortex (OTC) serves as an 
important reference point. Specifically, it is well established that OTC carries robust information 
about stimulus content (Grill-Spector & Weiner, 2014; Haxby et al., 2001) as well as memory-
related information (Martin et al., 2018; Miller et al., 1991). However, whereas memory effects in 
parietal cortex are typically expressed as increases in activation during successful remembering 
(repetition enhancement), memory-related effects in OTC typically manifest as decreased 

activation (repetition suppression) (Grill-Spector et al., 2006). Notably, these repetition 
suppression effects in OTC are thought to be stimulus-specific (Grill-Spector et al., 2006) in that 
they preferentially occur among voxels that are sensitive to the content of the repeated stimulus 
(Martin et al., 2018). This raises the question of whether a similar interaction between content 
and memory occurs within parietal cortex. 

An important and interconnected issue is how to measure content representations. To 
date, most studies have either used (a) pattern classification algorithms that classify broad visual 
categories (e.g., faces vs. scenes) (Kuhl et al., 2011; Polyn et al., 2005) or (b) representational 
similarity analyses that test for category- or item-specific patterns of activity (Favila et al., 2018; 
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Kuhl & Chun, 2014). While these approaches have advanced the field, they rely on a strict 
categorization of stimuli (whether stimuli match a category/stimulus label). This raises an 
important possibility that apparent content representations in parietal cortex could reflect 
categorization that is induced by task demands (Toth & Assad, 2002; Xu, 2018). This is of 
particular concern when experimental stimuli are deliberately selected and grouped into 
categories that are salient or explicitly relevant to participants (Kuhl et al., 2011, 2013; Kuhl & 
Chun, 2014; Polyn et al., 2005). An alternative approach is to decompose content into multiple, 
continuous feature dimensions and to then map these features to neural activity patterns (Huth 
et al., 2016; Lee & Kuhl, 2016; Pereira et al., 2018). This approach has been formalized in voxel-

wise encoding models (Naselaris et al., 2011) and has been successfully applied in a handful of 
fMRI studies of memory to date (Bone et al., 2020; Naselaris et al., 2015). 

Here, in a human fMRI study, we used voxel-wise encoding models and a novel form of 
content ‘tuning functions’ to test how parietal cortex and OTC combine memory signals with 
content representations. Specifically, using a recognition memory task with hundreds of natural 
scene images, we tested the degree to which memory and contents effects were spatially 
overlapping within parietal and OTC regions and, critically, whether recognition memory signals 
interacted with the expression of content information. 
 

METHODS 

 

Participants 

 
Twelve healthy subjects were recruited from the University of Oregon community. All subjects 
were right-handed, native English speakers, and were in good health with no history of 
neurological disorder, as determined by a pre-experiment screening. All subjects reported 
normal or corrected to normal vision. Informed consent was obtained from all subjects according 
to a protocol approved by the University of Oregon Institutional Review Board, and all subjects 
were paid for their participation. Each subject completed two scanning sessions performed on 
separate days; the mean delay between sessions was five days (range: 1 – 12 days). One subject 
was excluded from data analysis for falling asleep in the scanner and not completing the task. 
Another subject was excluded for not following the instructions for the task. We therefore report 
results for 10 subjects (5 female) ranging in age from 18 to 29 years old (M = 23.6, SD = 3.8). 
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Stimuli 

 
The stimulus set consisted of 1284 unique color photographs of natural scenes. Images were 
collected from various sources on the Internet (e.g., Google Images). Content varied among the 
images, including people, places, animals, and objects. Included in the stimulus set were images 
of famous people or places; 152 (~12%) included famous people (e.g. Barak Obama), while 200 
(~16%) included famous places (e.g. the Golden Gate Bridge). Each image was cropped to a 
400 × 400 pixel square. 768 images were randomly selected from the image pool for each subject 
(384 per session). The number of ‘famous’ images was not balanced between subjects or 
sessions. Selected images for each session were randomly assigned to one of three 
experimental conditions: repeated once, repeated three times, or novel (1/3 of stimuli in each 
condition). 
 

Image annotations  
 

Image annotations (verbal descriptions) were collected in an online experiment (Figure 1B) via 

Amazon’s Mechanical Turk using the psiTurk system (McDonnell et al., 2014). A total of 293 
subjects participated for monetary compensation. Informed consent was obtained from all 
subjects electronically according to a protocol approved by the University of Oregon Institutional 
Review Board. Subjects were shown images randomly drawn from the stimulus set, one at a 
time. Each session had 20 unique images, except for one subject who viewed 17 images due to 
a technical error. For each image, subjects were instructed to type 5 to 10 words that “best 
represent the content or situation of the entire image.” A total of 337 sessions were completed 
across all subjects: 264 subjects completed 1 session, 19 completed 2, 8 completed 3, 1 
completed 4, and 1 completed 7 (M = 1.15 sessions per subject, SD = 0.55). An additional 3 
sessions from 2 subjects were excluded for failure to follow the instructions. While it was possible 
for a given subject to see the same images across different sessions, this rarely occurred: there 
was an average of 22.99 trials (SD = 11.07) per subject and an average of 22.94 unique images 
(SD = 10.74) per subject. Subjects generated on average 5.687 words per image (SD = 1.24), 
and each image had responses from an average of 5.23 subjects (SD = 0.81). 
 

Experimental design and procedures 
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The fMRI experiment consisted of two sessions per subject. Each session consisted of two 

phases: a study phase followed by a retrieval phase (Figure 1A). The study phase occurred 

outside the scanner and was intended to manipulate the episodic history of the images. During 
the study phase, subjects performed a pleasantness judgment task for 2/3 of the images 
selected for that session. Each trial consisted of an image shown at the center of the screen over 
a gray background for 2.25 seconds, followed by a fixation dot for 0.25 seconds. Subjects were 
instructed to indicate whether they liked, disliked, or felt neutral about the image by pressing a 
corresponding keyboard button within 2.5 seconds of the image onset. A total of 256 images 
were presented in the study phase for each session. Half of these images were shown only one 
time, and the other half were shown three times. Thus, there were 512 (128*1 + 128*3) trials in 
total, which were divided into 8 blocks of 64 trials each. Trial order was randomized for each 
session and subject. Subjects were allowed to take a short break between blocks. Subjects were 
told in advance that the study phase would be followed by a memory test on the items presented. 
 After finishing the study phase, subjects entered the fMRI scanner and completed the 
retrieval phase. During the retrieval phase, subjects performed a recognition memory test. 
Images were presented one at a time and subjects judged whether or not each image had 
appeared in the study phase and how confident they were in this decision. Each trial consisted 
of an image shown at the center of a gray screen for 1.5 seconds, followed by a fixation dot for 
8.5 seconds. Subjects were asked to respond by pressing a button on the response box that 
corresponded to their memory judgment (sure old, likely old, likely new, sure new) within 4 
seconds of the image onset. There were 8 scan runs. Each run consisted of 48 trials, divided 
evenly between the three experimental conditions (16 trials repeated once; 16 repeated three 
times; 16 novel). Stimuli in the repeated once condition had appeared once during the study 
phase, stimuli in the repeated three times condition had appeared three times during the study 
phase, and stimuli in the novel condition had not appeared in the study phase. Thus, there were 
256 ‘old’ trials and 128 ‘new’ trials per retrieval session (384 trials total). Each image was shown 
only once during the retrieval phase, and images were not repeated across sessions. Trial order 
was randomized for each run, session, and subject. At the beginning and end of each retrieval 
session there was a 2-TR blank screen.  
 Sessions 1 and 2 were identical in procedure except that in Session 1 the study and 
retrieval phases were both preceded by practice trials. The practice trials used a separate set of 

images that were not included in the 1284 images used in the main experiment. There were 8 
study practice trials identical to the study trials in the main experiment. There were 6 retrieval 
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practice trials that consisted of an image presented in the center of a gray screen for 1.5 
seconds, followed by a fixation dot for 3.5 seconds. Subjects could respond within 4 seconds 
of the image onset.  
 

  
Figure 1. Experimental procedures and analysis methods. (A) Procedures for the study phase and the retrieval phase. 
During the study phase, subjects indicated whether they liked, disliked, or felt neutral about each presented image. 
During the retrieval phase, subjects performed a recognition memory test where they indicated whether they had seen 
each image in the study phase (‘old’) or not (‘new’), and how confident they were in their memory judgement (‘sure’ 
or ‘likely’). (B) Image annotation task. In a separate online experiment, we collected verbal descriptions of image stimuli 
from independent human subjects. For each image, subjects typed 5 to 10 words that best described the image. (C) 
Content-based encoding model analysis. We first performed a principal component analysis on the word embedding 
vectors describing the image stimuli (averaged across all words describing each image). We then used linear 
regression to model the relationship between each image’s first 30 principal component scores and each voxel’s 
activation level evoked by the image during the retrieval phase. 

 

fMRI acquisition 

    
fMRI scanning was conducted at the Robert and Beverly Lewis Center for NeuroImaging at 
University of Oregon on the Siemens Skyra 3T MRI scanner. Whole-brain functional images were 
collected using a T2*-weighted multiband accelerated echo-planar imaging sequence (TR = 2s; 
TE = 25ms; flip angle = 90°; multiband acceleration factor = 2; 72 horizontal slices; grid size 104 
× 104; voxel size 2 × 2 × 2mm3). A scanning session consisted of 8 functional runs, and a total 
of 244 volumes were collected for each run. Fieldmap images were also acquired to correct for 
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B0 magnetic field inhomogeneity. A whole-brain high-resolution anatomical image was collected 
at the end of each scanning session using a T1-weighted MPRAGE pulse sequence (grid size 
256 × 256; 176 sagittal slices; voxel size 1 × 1 × 1 mm3).        

 

fMRI data preprocessing 

       
Preprocessing of the neuroimaging data was conducted using FSL (FMRIB Software Library, 

http://www.fmrib.ox.ac.uk/fsl). Functional images were first corrected for head motion within 

each functional run using MCFLIRT, and then across runs and sessions using linear 
transformation such that all functional volumes were aligned to the first volume of the first 
session. Motion-corrected images were then corrected for B0 magnetic field inhomogeneity 
using FUGUE. To more precisely coregister the unwarped images to the first volume of the first 
session, we performed an additional nonlinear transformation using FNIRT. Finally, functional 
images were spatially smoothed with a Gaussian kernel (4 mm full-width half-maximum) and 
high-pass filtered (cutoff = 0.01 Hz). High-resolution anatomical images were brain extracted and 
coregistered to the functional images using linear transformation.  
 

Region of interest definition 

 

All regions of interest (ROIs; Figure 2A) were subject-specific and anatomically defined. For each 

subject, FreeSurfer’s cortical reconstruction (recon-all) was applied to the high-resolution 
anatomical image obtained in Session 1. Six bilateral cortical ROIs were defined based on 
FreeSurfer’s Destrieux atlas (Destrieux et al., 2010): In the lateral and medial parietal cortex, we 
examined the superior parietal cortex (SPC), intraparietal sulcus (IPS), supramarginal gyrus 
(SMG; a combination of the supramarginal gyrus and the Jensen sulcus), angular gyrus (ANG), 
and posterior medial cortex (PMC; a combination of the precuneus, subparietal sulcus, and 
dorsal posterior cingulate gyrus). We also examined the occipitotemporal cortex (OTC), which 
consisted of several brain areas spanning the occipital and ventral temporal cortex (the occipital 
pole, inferior occipital gyrus and sulcus, middle occipital gyrus, superior occipital gyrus, cuneus, 
lingual gyrus, fusiform gyrus, parahippocampal gyrus, calcarine sulcus, anterior and posterior 
transverse collateral sulcus, middle occipital sulcus and lunatus sulcus, superior occipital sulcus 
and transverse occipital sulcus, anterior occipital sulcus and preoccipital notch, lateral and 
medial occipitotemporal sulcus, parieto-occipital sulcus). All ROIs were masked by subject-
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specific whole-brain masks generated from functional images to exclude areas where signal 
dropout occurred. The number of voxels included in the ROIs varied across subjects (SPC range 
= 1707–2798, M = 2116.7, SD = 315; IPS range = 2100–3114, M = 2570.2, SD = 345.8; SMG 
range = 2250–3171, M = 2643.3, SD = 298.4; ANG range = 1965–2720, M = 2226.5, SD = 255.2; 
PMC range = 2617–4387, M = 3540.1, SD = 540.6; OTC range = 18609–24022, M = 21222, SD 
= 1733.9). 
 

General linear model analysis 

 
To obtain trial-by-trial fMRI activation patterns for each subject and session, general linear model 

(GLM) analyses were performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm). 

The design matrix for each scanning run included 48 trial regressors convolved with the 
canonical hemodynamic response function. Six motion parameters and impulse responses 
representing volumes with unusually large motion (i.e., motion outliers detected using the 
function fsl_motion_outliers in FSL) were included as nuisance regressors. One-sample t-tests 
against a contrast value of 0 were performed to obtain trial-specific t statistic maps.  
 

Encoding model analysis 

  
We created two separate voxel-wise encoding models: a memory-based encoding model and a 
content-based encoding model. The memory-based encoding model captured information 
about the episodic history of images and participants’ subjective memory judgments. The 
content-based encoding model captured information about the semantic content of images.  

 The memory-based encoding model included regressors representing the three levels of 
image repetition during the study phase (novel, repeated once, repeated three times) crossed by 
the four levels of recognition memory decisions (‘sure old,’ ‘likely old,’ ‘likely new,’ ‘sure new’). 
Separate regressors were generated for each trial type (e.g., novel images classified as ‘sure 
new’), with a value of one for the relevant trials and zero for the remaining trials. Additionally, 
while not a factor of interest—and not a factor that was controlled for when selecting stimuli—
pre-experimental familiarity of images (or at least the potential for pre-experimental familiarity) 
was included as a regressor. Namely, trials in which the presented image contained a famous 
place or a famous person were assigned a value of one, and the remaining trials were assigned 
a value of zero. Thus, there were 13 regressors in total. We also built a separate memory-based 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.25.513263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.25.513263
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

encoding model excluding pre-experimental familiarity to assess the effect of the variable. All 
regressors were normalized (z-scored) across all trials included in the model. 

The content-based encoding model was created using the human annotations collected 

from the online experiment (Figure 1B-C). Each online subject’s responses (words describing 

each image) were spell-checked and transformed into vectors of 300 numbers using Google’s 
pre-trained Word2Vec model. Words not included in the Word2Vec model were excluded from 
the analysis. For each image, the Word2Vec vectors were averaged across all words describing 
the image (responses were concatenated across online subjects) to generate a single vector per 
image. For dimensionality reduction (to reduce overfitting), a principal component analysis was 
performed on the Word2Vec vectors across all images used in the experiment. For each image, 
the first 30 principal component scores were selected to represent the image presented at each 
retrieval trial, and were used as the 30 regressors of the semantic encoding model. The first 30 
principal components explained 70% of the variance among the vectorized descriptions.  
 For both the memory-based and content-based encoding models, we employed linear 
regression to predict the activation level of each voxel within an ROI for each retrieval trial from 
a single scanning session or both sessions. When a single scanning session was used, the trial-
by-trial activation maps (t statistics) of an ROI were normalized (z-scored) across trials within the 

session. When both scanning sessions were used, the activation maps were first normalized 
across trials within each session, and then across all trials from both sessions. Trials in which 
subjects failed to make recognition memory responses were excluded from analyses. We used 
a leave-one-trial-out cross-validation method; we first generated the parameter estimates of the 
independent variables (regressors) using all but one trial included in the model, and used the 
parameter estimates to predict the activation of the left-out trial. 
 We tested the performance of the models using a two-alternative-forced-choice (2AFC) 

test method for which chance-level accuracy was 50% (Figure 2B) (Lee & Kuhl, 2016). 

Specifically, for each retrieval trial, we computed the cosine similarity between its predicted 
activation pattern and its measured (actual) activation pattern (same-image similarity). We also 
computed the cosine similarity between the predicted activation pattern of the trial and the 
measured activation pattern of every other trial (across-image similarity). We then separately 
compared the trial’s same-image similarity to each of the across-image similarity values. Thus, 
N – 1 2AFC tests were performed for each trial, where N is the total number of trials in the 
experiment. For each test, the prediction was considered accurate when same-image similarity 
was greater than across-image similarity. Thus, the accuracy for each trial was represented by 
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the percentage of accurate predictions across all tests for that trial. These trial-level accuracy 
values were then averaged across trials (and sessions, where relevant) to generate a subject-
specific prediction accuracy for each ROI. Within each ROI, and for each subject, we also 
identified individual voxels whose activation levels were significantly explained by the memory-
based and/or content-based encoding models. To do this, we computed the Pearson correlation 
between the predicted time course of trial-by-trial activation levels and the measured activation 

time course for each voxel in an ROI (Figure 3A). We then generated a null distribution of 

correlations by randomly shuffling (1000 times) trial numbers and then re-computing the 
correlation between the predicted and measured activation time courses. The significance (one-
tailed p-value) of the encoding model accuracy within the voxel was defined as the proportion 
of correlation values in the null distribution which were greater than or equal to the actual 
correlation between the predicted and measured time courses computed using the original (not 
shuffled) trial order.    

For analyses related to encoding model accuracy and voxel distributions, we report the 
results obtained using data combined across both sessions. Results from single-session 
analyses were only used to independently select memory/content voxels that were then used for 
the content tuning analysis in a cross-validated manner (see below). 

 

Content tuning analysis 

 
To characterize how individual brain regions combined episodic history and semantic content of 
images during retrieval, we generated content tuning functions for individual voxels within each 
ROI by measuring a given voxel’s response to different semantic categories of images. These 
tuning functions were separately generated for ‘hit’ and ‘correct rejection’ trials in order to assess 
whether the shape of the tuning function interacted with recognition memory.  

We first categorized the image stimuli by applying K-medoids clustering (Lloyd, 1982) to 
the full Word2Vec vectors (not the dimensionally reduced data) for all images used in the 
experiment. Cosine distance was used as the distance metric to measure the similarity between 
each image vector and the cluster medoid. To select the number of clusters (k), we performed 
the clustering analysis using a range of k values (5 – 20), and selected k that maximized the 
number of clusters that had at least 80 images per cluster, after excluding images whose cosine 
distances to their corresponding cluster medoids were greater than .4. This resulted in 9 clusters 

(Figure 4A) roughly corresponding to the following semantic categories (as subjectively identified 
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by the experimenters): humans (e.g., human faces, celebrities), animals, foods, architectural 
buildings, indoor scenes, urban outdoor scenes (e.g., streets, city landscapes), outdoor water 
scenes (e.g., beaches, lakes), mountains, events and activities (e.g., sports games). It is 
important to note that each image was assigned to only one of the 9 categories, despite the fact 

that images often combined elements from multiple categories (e.g., see images in Figure 1). 

Among the 1284 images used in the experiment, 146 images were excluded from the content 
tuning analysis as they were not strongly associated with any of the categories (i.e., cosine 
distance to the assigned cluster medoid > 0.4). 

We then generated tuning functions separately for each subject, voxel, and for the hit and 
correct rejection trials. Generating the tuning functions involved a two-step, cross-validated 
process where each session of the fMRI data was alternately used for each step (with results 
then averaged across the two cross-validation folds). The first step was to use data from one 
fMRI session to determine each voxel’s mean activation for each of the 9 semantic categories 
identified from the clustering analysis (see above). The mean activation per category was 
independently computed for the hit and correct rejection trials and data were then averaged 

across the hit and correct rejection trials (this ensured that hit and correct rejection trials had 
equal weight). For each voxel, the 9 semantic categories were then rank-ordered from the 
category that evoked the highest mean activation to the category that evoked the lowest mean 
activation. The second step was to test whether these category preferences, generated from half 
of the data, generalized to the held-out data (i.e., data from the other fMRI session). To do so, 
for each voxel we computed the mean activation for each rank-ordered semantic category using 
the held-out data. For a given voxel, its mean response for each of the rank-ordered semantic 
categories was defined as its content tuning function. To the extent that category preferences 
successfully generalized across fMRI sessions, this would be reflected by a negatively-sloped 
tuning function (i.e., decreasing activity for progressively ‘less preferred’ categories). Critically, 
content tuning functions were separately computed for hit trials and correct rejection trials by 
segregating trials from the held-out data according to memory status (hit, correct rejection) and 
then averaging across trials within each memory status (i.e., averaging the hit trials and averaging 
the correct rejection trials). 

Finally, within each ROI we separately considered content tuning functions for (1) voxels 
that showed significant prediction effects for the memory-based encoding model (‘memory 
voxels’) and (2) voxels that showed significant prediction effects for the content-based encoding 
model (‘content voxels’). Significant prediction effects were defined as p < .05 (uncorrected) from 
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the one-tailed permutation tests described in Encoding Model Analyses. The rationale for 
comparing tuning functions for ‘memory voxels’ vs. ‘content voxels’ was to test whether some 
voxels preferentially—or even selectively—carried content information or memory information. 
Critically, however, the encoding models used for voxel selection were based on only half of the 
data (the same half of the data used to identify the content tuning preferences). Thus, the voxel 
selection procedures (i.e., how the voxel groups were defined) and the category preference 
procedures (i.e., how tuning functions were defined) were based on fMRI data that was entirely 
independent from the critical test data. Again, this ensured that there was no circularity to these 
analyses (Kriegeskorte et al., 2009).  

In summary, our procedure for generating content tuning functions allowed us to test 
whether the relative content preferences of a voxel—which were defined using half of the data—
generalized to independent, held-out data. This cross-validated procedure critically ensured that 
there was no circularity in how the content tuning functions were generated. Importantly, while 
tuning functions were always generated in a voxel-specific manner and individual voxels were 
likely to have different category preferences, our approach readily allowed for tuning functions 
to be averaged across voxels within an ROI. That is, our approach tested the degree to which 
each voxel’s category preferences were preserved (across sessions), regardless of whether 
individual voxels had similar category preferences. 
 

Statistical tests 

 
To test the accuracy of our 2AFC test, where chance performance would correspond to 50% 
accuracy, we used two-tailed, one-sample t-tests to compared observed accuracy to 50%. For 
direct comparison between pairs of ROIs or conditions, we performed two-tailed, paired-
samples t-tests. For comparisons involving more than two ROIs/conditions or for testing 
interactions between different factors, we used repeated-measures ANOVAs, with subject 
number as the error factor. Within the ANVOAs, linear contrast analyses were used to test for 
linear trends along the rank ordered category preference bins in the content tuning analysis. 
 To test the significance of encoding model accuracy within each individual subject, we 

performed nonparametric permutation tests. For each subject, we generated the null distribution 
of accuracy by randomly shuffling the trial numbers and then computing the subject-specific 
accuracy using the same 2AFC test method as described above in Encoding model analysis 
(number of iterations = 1000). The significance (one-tailed p-value) of subject-specific model 
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accuracy was defined as the proportion of accuracy values in the null distribution which were 
greater than or equal to the actual accuracy computed using the original trial order.    
 

RESULTS 

 

Behavioral results 

 
All behavioral data were first averaged across sessions and then across subjects. Data are 
reported as mean (M) ± standard deviation (SD). During the study phase (which occurred outside 
the fMRI scanner), the mean percentages of trials receiving each pleasantness rating were as 
follows: ‘like’ = 55.28% ± 19.35%, ‘dislike’ = 11.89% ± 11.13%, ‘neutral’ = 30.70% ± 18.67%, 
no response = 2.12% ± 5.89%. The mean percentage of images with a consistent response 
across all three presentations was 80.51% ± 5.94%. Because pleasantness ratings were only 
included as an incidental encoding task, these data are not considered further. During the 
scanned recognition memory task, the mean hit rate was 88.51% ± 8.93% and the mean false 
alarm rate was 9.82% ± 7.77%. Mean sensitivity (measured by d’) was 2.77 ± .80 (range: 1.37 – 
4.02), which was significantly above chance (t9 = 10.97, p < 0.0001). Sensitivity did not differ 

between Sessions 1 and 2 (t9 = 0.29 p = .779). Sensitivity was significantly higher for images that 
were presented three times in the study phase compared to those presented once (d’ = 3.37 ± 
.38 vs. 2.47 ± .47, respectively; t9 = 8.41, p < 0.00007). 
 

Memory-based encoding model 

 
The memory-based encoding model attempted to predict the activity patterns evoked by each 
scene image based on three variables: the number of repetitions in the study phase, response 
during the recognition memory task, and pre-experimental familiarity (see Methods for details). 
Prediction accuracy was assessed for each image by using cosine similarity to compare the 
predicted activity pattern to (a) the activity pattern evoked by that image (same-image similarity), 
and (b) the activity pattern evoked by other images (across-image similarity; see Methods). If 
same-image similarity exceeded across-image similarity for a given comparison, this was 
considered an accurate prediction. Using this method, chance accuracy corresponds to 50%.  
 Accuracy was above chance for each of the ROIs, as assessed by one-sample t-tests 

(SPC: 54.93 ± 2.21%, t9 = 6.68, p = 0.0001; IPS: 55.50 ± 2.07%, t9 = 7.99, p < 0.0001; SMG: 
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55.41 ± 2.19%, t9 = 7.42, p < 0.0001; ANG: 56.78 ± 1.61%, t9 = 12.60, p < 0.0001; PMC: 55.70 

± 1.70% t9 = 10.06, p < 0.0001; OTC: 54.28 ± 2.89%, t9 = 4.45, p = 0.002; Figure 2C). However, 

accuracy also significantly varied across the ROIs (repeated-measures ANOVA: F5,45 = 5.04, p = 

0.001), and was numerically highest in ANG and lowest in OTC. A direct contrast between ANG 
and OTC revealed significantly greater accuracy in ANG (paired-samples t-test: t9 = 4.67, p = 
0.001). Considering individual subjects, accuracy was above chance, as determined by subject-
specific permutation tests (one-tailed, p < .05; see Methods), for every subject (10/10) for ANG, 
IPS, and PMC; for 9/10 subjects for SPC and SMG; and for 8/10 subjects for OTC. 
 We also tested whether excluding the pre-experimental familiarity variable (whether or 
not scenes had ‘famous’ content) had any impact on the memory-based encoding model 
accuracy. Removing this variable from the model resulted in slightly but significantly lower 

accuracies in ANG (-0.28 ± 0.29%, t9 = 3.04, p = 0.014) and PMC (–0.28 ± 0.35%, t9 = 2.51, p = 
0.033), but no significant difference for other parietal ROIs (SPC: –0.05 ± 1.0%, t9 = 0.14, p = 
0.89; IPS: –0.48 ± 0.80%, t9 = 1.88, p = 0.09; SMG: –0.13 ± 0.52%, t9 = 0.79, p = 0.45). For OTC, 

however, accuracy significantly increased when pre-experimental familiarity was excluded (2.81 
± 1.68%, t9 = -5.27, p = 0.0005). These data indicate that pre-experimental familiarity positively 
contributed to prediction accuracy only for ANG and PMC, and very modestly for these regions. 
Ultimately, we do not consider this variable in more detail given the fact that the number of 
‘famous’ vs. ‘non-famous’ scenes was not balanced across subjects, runs, or repetition 
conditions. That said, our rationale for including the variable in the memory-based encoding 
model was that it does reflect a form of memory for an image and might therefore explain 
meaningful variance. 
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Figure 2. Prediction accuracy for the memory-based and content-based voxel-wise encoding models. (A) Regions of 
interest shown on the inflated cortical surface of the left hemisphere (left = lateral view; right = medial view). (B) Two-
alternative-forced-choice (2AFC) test for assessing the trial-level accuracy with which the encoding models predicted 
the activation pattern within an entire region of interest. For each model (memory-based and content-based), we 
predicted the activation pattern within each region of interest for each image shown during the retrieval phase. The 
prediction was considered accurate when the predicted pattern was more similar to the actual (evoked) activation 
pattern than the pattern evoked by a different image. (C) 2AFC test accuracies of the memory model (left) and the 
content model (right). Colored dots indicate individual subjects. White circles indicate the mean across subjects. Error 
bars show SEM across subjects. Dotted horizontal lines show statistical significance thresholds (one-tailed, p < .05) 
defined from null distributions generated through permutation tests (averaged across all subjects). In A and C, SPC = 
superior parietal cortex, IPS = intraparietal sulcus, SMG = supramarginal gyrus, ANG = angular gyrus, PMC = posterior 
medial cortex, OTC = occipitotemporal cortex.  

 
 

Content-based encoding model 
 

The content-based encoding model attempted to predict the activity pattern evoked by a scene 
image based on the 30 principal components that represented the content of the image (see 
Methods). Prediction accuracy was assessed using the same procedures as for the memory-
based encoding model (i.e., by comparing same-image similarity to across-image similarity). 
Accuracy was above chance for each of the ROIs except SMG, as assessed by one-sample t-
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tests (SPC: 53.2 ± 1.65%, t9 = 5.84, p = 0.0002; IPS: 54.0 ± 2.10%, t9 = 5.68, p = 0.0003; SMG: 
50.4 ± 2.18%, t9 = 0.52, p = 0.615; ANG: 54.3 ± 2.88%, t9 = 4.48, p = 0.0015; PMC: 53.89 ± 

2.16%, t9 = 5.42, p = 0.0004; OTC: 62.1 ± 2.75%, t9 = 13.19, p < 0.0001). Accuracy markedly 

varied across the ROIs (repeated-measures ANOVA: F5,45 = 58.08, p < 0.0001; Figure 2C), with 

OTC exhibiting the highest accuracy. While ANG exhibited the highest accuracy (numerically) 
among parietal ROIs, ANG accuracy was significantly lower than accuracy in OTC (paired-
samples t-test: t9 = 16.34, p < 0.0001). Considering individual subjects, accuracy was above 
chance, as determined by subject-specific permutation tests (one-tailed p < .05), for every 

subject (10/10) for OTC; for 9/10 subjects for PMC; for 8/10 subjects for SPC, IPS, and ANG, 
and for 3/10 subjects for SMG. 
 To test whether the content model and the memory model were differentially predictive 
of activity patterns across regions of interest, we performed a repeated measures ANOVA with 
factors of ROI (all ROIs) and encoding model type (memory, content). The interaction between 
ROI and model type was highly significant (F6,54 = 49.364, p < 0.0001). This interaction was largely 
driven by the fact that OTC was associated with higher accuracy than the parietal ROIs for the 
content model, but lower accuracy than the parietal ROIs for the memory model. There was also 
a significant interaction when directly comparing ANG vs. OTC (F1,9 = 191.34, p < 0.0001). 

 

Distribution of memory and content voxels 

 

We next assessed the percentage of voxels within each ROI that exhibited significant effects for 

each encoding model (the memory-based and content-based models; see Methods, Figure 3B-

D). For this analysis, we used a liberal threshold (p < 0.05) as the goal was only to assess the 
relative distribution of these voxels across ROIs. Within each ROI, each voxel was labeled 
according to one of four categories: content only, memory only, overlap (i.e., both), or neither 

(Figure 3C). As a first step, we compared the mean percentage of content versus memory voxels 

(excluding overlap voxels) across ROIs (Figure 3D). An ANOVA with factors of voxel type 

(content, memory) and ROI revealed a significant main effect of ROI (F5,45 = 4.86, p = 0.001), a 

significant main effect of voxel type (F1,9 = 12.57, p = 0.006), and a significant interaction between 
ROI and voxel type (F5,45 = 14.216, p < 0.0001). The main effect of ROI was primarily driven by 
the relatively high percentage of significant voxels (content and memory) in angular gyrus. The 

main effect of voxel type reflected an overall higher percentage of memory voxels (M = 24.71 ± 
8.50%) compared to content voxels (M = 14.60 ± 5.47%). However, the significant interaction 
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reflected the fact that whereas parietal ROIs exhibited relatively more memory voxels than 
content voxels, OTC exhibited the opposite pattern. Paired-samples t-tests applied to the 
individual ROIs revealed an effect/trend toward a higher percentage of memory voxels compared 
to content voxels for each of the parietal ROIs (SPC: 25.25 ± 4.77% vs. 11.98 ± 2.09%, t9 = 2.24, 

p = 0.052; IPS: 20.90 ± 2.47% vs. 13.60 ± 1.63%,  t9 = 2.01, p = 0.076; SMG: 32.63 ± 4.79% vs. 
8.41 ± 2.10%, , t9 = 3.98, p = 0.0032; ANG: 35.71 ± 2.88% vs. 13.04 ± 2.07%, t9 = 5.08, p = 
0.0007; PMC: 24.38 ± 2.14% vs. 14.50 ± 1.66%, t9 = 2.99, p = 0.015); for OTC, however, there 

was a significantly lower percentage of memory voxels than content voxels (9.40 ± 1.11% vs. 
26.04 ± 2.21%, t9 = -5.48, p = 0.0004). A direct comparison between ANG and OTC revealed a 
significant interaction between ROI and voxel type (F1,9 = 40.18, p = 0.0001) again reflecting the 

relative bias toward memory voxels in ANG and content voxels in OTC. 
 We also compared the total percentage of significant voxels (content + memory + 
overlap) across the ROIs. A repeated-measures ANOVA revealed a significant main effect of ROI 
(F5,45 = 8.93, p < 0.0001) with ANG again containing the highest percentage of total significant 

voxels (Figure 3C). Similarly, considering the percentage of overlap voxels alone, there was a 

significant main effect across ROIs (F5,45 = 5.71, p = 0.0003), with ANG containing the highest 
percentage of overlap voxels and SMG containing the lowest. Direct contrasts (paired-samples 
t-tests) between ANG and OTC revealed a higher total percentage of significant voxels (content 

+ memory + overlap) in ANG compared to OTC (ANG: 66.46 ± 14.85%; OTC: 48.59 ± 9.16%; t9 
= 5.05, p = 0.0007) but no significant difference in the percentage of overlap voxels (ANG: 17.70 
± 3.45%; OTC: 13.14 ± 2.37%; t9 = 1.09, p = 0.29). 
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Figure 3. Voxel-specific encoding model accuracy and the distribution of different voxel types. (A) For each voxel, we 
measured the encoding model accuracy by computing the Pearson correlation between the predicted trial-by-trial 
activation time course (‘Predicted activity’; left) and the actual (evoked) time course (‘Measured activity’; right). (B) An 
example subject’s distribution of voxel-wise correlations between predicted and actual time courses in the angular 
gyrus (ANG; left) and the occipitotemporal cortex (OTC; right). Predictions were generated from either the content-
based encoding model (filled bars) or the memory-based encoding model (unfilled bars). Voxels were considered to 
show significant effects for the content or memory models when their corresponding correlation values were greater 
than the statistical significance threshold (one-tailed, p < .05) defined from null distributions generated through 
permutation tests. Dotted vertical lines indicate the statistical threshold averaged across all voxels within each ROI (r 
= .06 for both models and regions). (C) Mean percentages of voxels within each region of interest that show significant 
effects of 1) the content model only (Content only), 2) the memory model only (Memory only), 3) both models (Overlap), 
and 4) neither model (Neither). (D) Percentages of voxels within each region of interest that were labeled as ‘content 
only’ or ‘memory only’. Colored filled/unfilled dots indicate individual subjects’ content/memory only voxel 
percentages, respectively. Black filled/unfilled dots indicate averages across subjects. In C and D, SPC = superior 
parietal cortex, IPS = intraparietal sulcus, SMG = supramarginal gyrus, ANG = angular gyrus, PMC = posterior medial 
cortex, OTC = occipitotemporal cortex. 
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Content tuning as a function of recognition memory decisions 

 
The preceding analyses indicate that content information and memory information were broadly 
distributed across parietal cortex and OTC, while also highlighting differences in how information 
was distributed across regions. To better characterize how individual brain regions combined 
memory and content information, we conducted a complementary series of analyses in which 
we generated ‘content tuning functions’ for each ROI. Critically, separate tuning functions were 
generated for hits (old scenes endorsed as ‘old’) and correct rejections (new scenes endorsed 

as ‘new’) in order to test whether content tuning differed as a function of recognition memory 
status (for details, see Methods). To generate these tuning functions, we first used k-medoids 
clustering applied to scene image annotations to group the scene images into 9 semantic 

categories (see Methods; Figure 4A). For every voxel within each ROI, half of the fMRI data (i.e., 

data from one fMRI session) were used in a cross-validated manner to rank-order the 9 
categories according to the voxel’s ‘preference’ (i.e., its relative activation to images from each 
category). These voxel-specific preferences were then tested for generalization in the held-out 
data (i.e., data from the other session). Successful generalization would be evidenced by voxels 
displaying the same relative profile of activation across categories (i.e., the same ‘tuning’) in the 
held-out data. Specifically, we tested for a linear trend in activation as a function of category 
preference (i.e., that activation decreased from the ‘most’ to ‘least’ preferred categories). Finally, 
within each ROI, we compared tuning functions for: (1) voxels that exhibited significant content 
effects (content voxels) and (2) voxels that exhibited significant memory effects (memory voxels), 
as defined based on results from independent encoding model analyses (see Methods). The 
rationale for separately considering content voxels and memory voxels (and for excluding the 
overlap voxels) is that it provides another way for assessing the separability (or inseparability) of 
content and memory information. Namely, if voxels specifically selected for exhibiting either 
content or memory effects (in one half of the data) nonetheless express the other form of 
information (in the held-out half of data), this would provide evidence that these two forms of 
information are highly overlapping (or, put another way, difficult to separate). 

For each ROI, we generated a separate repeated-measures ANOVA with factors of 
semantic category preference (the 9 rank-ordered category preference bins), recognition 
memory status (hit, correct rejection), and voxel type (content, memory). We first tested for main 
effects of semantic category preference (combining across the content and memory voxels): that 
is, whether the semantic tuning preferences identified from half of the data (one session) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.25.513263doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.25.513263
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

generalized to the held-out data (the other session). Indeed, for each ROI, there was a significant 

linear trend as a function of category preference (see Category Effects in Table 1). These linear 

trends indicate that category preferences were preserved across independent sessions and 
validate our approach for generating semantic tuning functions. Notably, the linear trends of 
semantic category preference interacted with voxel type (content vs. memory voxels) for all ROIs 

(Table 1). In each case, this interaction reflected a stronger linear trend (‘sharper’ tuning) for 

content voxels than memory voxels (see Figure 4B).  

We next tested for main effects of memory (hit vs. correct rejection). Significant main 
effects of memory were observed in SMG, ANG, and PMC, but not in IPS, SPC or OTC (see 

Memory Effects in Table 1). Interactions between memory and voxel type were present in all of 

the ROIs except SPC (SPC: F1,9 = 0.32, p = 0.59, IPS: F1,9 = 11.84, p = 0.007 SMG: F1,9 = 7.25, p 
= 0.03, ANG: F1,9 = 67.89, p < 0.0001, PMC: F1,9 = 8.07, p = 0.02; OTC: F1,9 = 7.98, p = 0.02; 

Table 1). Interestingly, however, while this interaction reflected a stronger effect of memory (hit 

> correct rejection) for memory voxels compared to content voxels in the parietal ROIs, OTC 
exhibited precisely the opposite effect, with a stronger effect of memory (in the direction of hits 

< correct rejections) for content voxels compared to memory voxels (Figure 4B). The fact that 

memory effects in OTC were stronger for content voxels than memory voxels suggests that 
memory effects in OTC were fundamentally related to a voxel’s content sensitivity. This finding 
is consistent with prior evidence that repetition suppression signals in OTC are content 
dependent (Grill-Spector et al., 2006). 
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Figure 4. Content tuning analysis. (A) Nine semantic categories of image stimuli were identified by applying k-medoid 
clustering on the word embedding vectors describing the images. Each dot represents an image, located on a 2-
dimensional space created by applying t-distributed stochastic neighbor embedding dimensionality reduction on the 
word embedding vectors of all images. Different colors represent different semantic categories. Each black dot and 
its associated picture show the medoid image of each category. The labels for each category (‘water’, ‘animal’, etc.) 
reflect subjective assessments (made by the experimenters) based on the clustering—these labels are purely 
descriptive. Note: the sample image for the human category is not an actual image from the experiment; actual images 
from the human category generally included human faces, which are withheld here due to publishing policies. (B) 
Content tuning functions for hit and correct rejection (CR) trials, separately for each ROI (row) and for content voxels 
(left) and memory voxels (right). Reliable content tuning is reflected by greater activation for ‘preferred’ semantic 
categories (left = most preferred category; right = least preferred category). (C) Memory effects (averaged across 
memory and content voxels) for angular gyrus (red) and occipitotemporal cortex (teal) as a function of voxels' category 
preference. Note: for angular gyrus, memory effects were defined as z-scored activation for hit – correct rejections 
whereas for occipitotemporal cortex, memory effects were defined as z-scored activation for correct rejections – hits. 
Shaded areas indicate SEM across subjects.   
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Table 1.  Analysis of content tuning functions. 

 Category Effects 

(content tuning) 

Category * 

Voxel Type 

Memory Effects 

(hit vs. CR) 

Memory * 

Voxel Type 

ROI F p F p F      p F p 

ANG 319.38 < 0.0001 37.24 < 0.0001 90.78 < 0.0001 67.89 < 0.0001 

IPS 248.96 < 0.0001 19.93 0.002 4.65 0.06 11.83 0.007 

SMG 38.16 < 0.0001 10.72 0.02 32.68 0.0003 7.25 0.03 

SPC 164.31 < 0.0001 32.72 < 0.0001 0.16 0.70 0.32 0.59 

PMC 228.75 < 0.0001 11.72 0.0007 112.56 < 0.0001 8.07 0.02 

OTC 1762.1 < 0.0001 300.43 < 0.0001 1.77 0.22 7.98 0.02 
 

For each region of interest (ROI) separate ANOVAs were applied to the content tuning functions to test for (1) linear 
effects of semantic category preference (across the 9 semantic categories; Category Effects); (2) interactions between 
Category Effects and voxel type (memory voxels vs. content voxels; Category * Voxel Type); (3) main effects of memory 
(hits vs. correct rejections; Memory Effects); and (4) interactions between Memory Effects and voxel type (Memory * 
Voxel Type). Notes: Category Effects and Memory Effects included voxel type (memory voxels vs. content voxels) as 
a factor, but overlap voxels were excluded; for all ANOVAs, degrees of freedom = 1,9. 
 
 

Finally, and critically, we tested whether the shape of the content tuning functions differed 
as a function of recognition memory status (hit, correct rejection). An ANOVA that again included 
factors of category preference (the 9 semantic categories), recognition memory status (hit, 
correct rejection), and voxel type (content voxels, memory voxels) revealed a significant 
interaction between category preference (the linear trend across category preference bins) and 
memory (hit, correct rejection) for OTC (repeated measures ANOVA: F8,72 = 13.37, p = 0.0003), 
but not for any of the parietal ROIs (SPC: F8,72 = 1.87, p = 0.17, IPS: F8,72 = 0.001, p = 0.97 SMG: 
F8,72 = 0.02, p = 0.90, ANG: F8,72 = 3.47, p = 0.06, PMC: F8,72 = 0.22, p = 0.64). (Note: none of the 

ROIs exhibited a three-way interaction between semantic category, memory status and voxel 
type: all p’s > 0.32). For OTC, the interaction between semantic category and memory status 
reflected a relatively stronger effect of memory (correct rejection > hit) for ‘preferred’ semantic 
categories.  
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To formally contrast the relationships between memory effects and content effects in 
ANG vs. OTC, we computed, for each ROI and averaging across content and memory voxels, 
the size of the memory effect (the difference between hits vs. correct rejections) for each 
category preference bin. Importantly, however, we defined memory effects in ANG as hit – 
correct rejection, whereas for OTC memory effects were defined as correct rejection – hit. The 

rationale for this different definition across ROIs is that here, and in numerous prior studies, 
memory effects in ANG are reflected by increased activation for ‘old’ items (repetition 
enhancement) (Cabeza et al., 2008; Rugg & King, 2018; Sestieri et al., 2017; Wagner et al., 2005) 
whereas memory effects in OTC are reflected by decreased activation for ‘old’ items (repetition 
suppression) (Grill-Spector et al., 2006; Miller et al., 1991). Thus, this allowed us to compare the 
absolute magnitude of memory effects across ANG and OTC. Indeed, there was a significant 
interaction between ROI (ANG, OTC) and category preference (the linear trend) (F1,9 = 6.605, p = 

0.01; Figure 4C), confirming that memory effects in ANG and OTC were differentially sensitive 

to category preference. As described above, memory effects in OTC were relatively stronger for 
more ‘preferred’ semantic categories. In contrast, memory effects in ANG were robust and 
generally consistent across category preference bins. Thus, despite the fact that ANG and OTC 
each contained information about memory and content, these regions combined these forms of 
information in distinct ways. 
 

DISCUSSION 

  

Here, we used voxel-wise encoding models and content tuning functions to characterize content 
representations of natural scene images in parietal and occipitotemporal cortices during a 
recognition memory task. We show that memory- and content-related signals are robustly 
distributed and highly overlapping within parietal cortex—particularly within the angular gyrus. 
While these two forms of information were expressed within common voxels in angular gyrus, 
they were statistically independent: content tuning did not interact with memory effects. In 
contrast, memory effects in occipitotemporal cortex (OTC) were preferentially carried by content-
sensitive voxels and the magnitude of these effects was dependent on the degree to which a 
given OTC voxel ‘preferred’ the content of a remembered stimulus. These findings provide new 
insight into how the brain combines content and memory information. 
 Our findings are consistent with numerous fMRI studies of human memory showing that 
content information can be decoded from parietal cortex (Bird et al., 2015; Bonnici et al., 2016; 
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Favila et al., 2018; Kuhl & Chun, 2014; Lee et al., 2016, 2018). However, our  combination of 
semantic (content-based) encoding models (Huth et al., 2016; Pereira et al., 2018) and content 
tuning functions provides a richer and more rigorous characterization of content representations 
than typical decoding measures. In particular, the content representations measured here cannot 
be explained as category or stimulus labels that are adaptively generated to satisfy task 
demands (Toth & Assad, 2002). Rather, the encoding model represents content as continuous 
weights across a diverse set of features (Bone et al., 2020; Lee & Kuhl, 2016). Moreover, the 
models were trained on images that were distinct from test images, avoiding the possibility that 
the model learned stimulus-specific labels. For the tuning functions, although we grouped 
images into 9 semantic categories, this was done for dimensionality reduction and these 
categories were not behaviorally-relevant to subjects. Thus, our findings provide some of the 
most compelling evidence to date that parietal regions involved in episodic memory also encode 
rich and multidimensional content information (Bird et al., 2015; Bone et al., 2020; Huth et al., 
2016). 
 By generating separate encoding models for memory- and content-related information, 
we were able to compare the relative sensitivity of parietal and occipitotemporal regions to each 
type of information. Not surprisingly, content effects were stronger in OTC than in parietal cortex 

(Figure 2C, 3B-D). Within parietal cortex, however, there were qualitative differences across sub-

regions. For example, while supramarginal gyrus and angular gyrus were both characterized by 

relatively strong memory effects (Figure 2C, 3C-D), content effects were more apparent in 

angular gyrus than in supramarginal gyrus (Figure 2C). Thus, our findings provide a unique 

characterization of functional heterogeneity across parietal regions (Hutchinson et al., 2014; 
Sestieri et al., 2017). In particular, our findings support the idea that, among parietal regions, 
angular gyrus was uniquely sensitive to the combination of memory and content information 

(Figure 3C) (Bonnici et al., 2016; Humphreys et al., 2021; Kuhl & Chun, 2014). 

 For our tuning function analyses, we sought to more precisely determine whether content 
representations changed as a function of recognition memory (Woolnough et al., 2020). Critically, 
we first independently identified subject-specific voxels from the encoding models based on 

whether they exhibited memory or content effects. Notably, we excluded ‘overlap voxels’ in order 
to test whether specific populations of voxels selectively expressed either memory or content 
information. Within angular gyrus, memory effects (hit > correct rejection) were, not surprisingly, 
stronger in memory voxels than content voxels and, conversely, content tuning was stronger 
(sharper tuning) in content voxels than memory voxels. In other words, angular gyrus contained 
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voxels that preferentially expressed either memory or content effects. Critically, however, 
content voxels still expressed memory effects and memory voxels still expressed content effects. 
Thus, even when we deliberately attempted to select voxels in angular gyrus that only expressed 
one type of information based on half of the data, these voxels nonetheless strongly expressed 
both forms of information in the held-out data. Thus, memory and content effects were not 

merely overlapping in angular gyrus (Bonnici et al., 2016; Kuhl & Chun, 2014; Ramanan et al., 
2018; Rugg & King, 2018; Shimamura, 2011)—they were difficult to segregate. 
 Our second main finding from the tuning function analyses was that the shape of content 
tuning in angular gyrus was unaffected by recognition memory success. Specifically, when 
contrasting tuning functions for hits versus correct rejections, there was a shift in the tuning 
functions (hit > correct rejection), but the tuning functions were parallel. Put another way, 
recognition-related increases were unrelated to a voxel’s preference for the content of the 
recognized image. Thus, although individual voxels in angular gyrus were reliably tuned to 
different types of content and these same voxels also strongly reflected recognition memory 
success, content representations were invariant to recognition memory success. 
 Importantly, the tuning function results in angular gyrus statistically contrasted with OTC. 
First, memory effects in OTC tuning functions (hit < correct rejection) were stronger for content 

voxels than for memory voxels. While counterintuitive, this suggests that memory effects in OTC 
were secondary to, or derived from, content representations. Indeed, the number of content 

voxels in OTC was also much higher than the number of memory voxels (Figure 3C)—thus, 

selecting voxels on the basis of content sensitivity was a more effective form of feature selection. 
Second, there was a statistical interaction between memory effects and content tuning in OTC. 
Namely, OTC memory effects were stronger for voxels that ‘preferred’ the content of the 
remembered image. Importantly, this interaction in OTC statistically differed from the relative 
independence of content and memory effects in angular gyrus (and other parietal regions) 

(Figure 4B-C). Thus, in contrast to angular gyrus, memory effects in OTC scaled with the degree 

to which voxels preferred the content of a recognized image (Grill-Spector et al., 2006).  
 Collectively, our findings are consistent with theoretical accounts which argue that 
angular gyrus functions as a convergence zone for multiple sources of information during 
memory retrieval (Ramanan et al., 2018; Seghier, 2013; Tibon et al., 2019) and that angular gyrus 
jointly contributes to both semantic and episodic memory (Humphreys et al., 2021). While our 
findings cannot adjudicate between all of the competing theories of how the angular gyrus 
contributes to memory (Cabeza et al., 2008; Vilberg & Rugg, 2008; Wagner et al., 2005), a unique 
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conclusion we can draw is that univariate increases in angular gyrus during successful 
recognition were not driven by the representation of recognized content. Instead, recognition 
effects may be better characterized as a broadband signal that rides on top of feature-specific 
channels that are tuned to different types of content. One interesting possibility is that 
recognition memory signals in angular gyrus could reflect a global bias toward internal 
processing that is induced by successful recognition (Honey et al., 2017). However, it is 
important to emphasize that our findings are based on a recognition memory paradigm and, 
therefore, may not generalize to other forms of memory (cued or free recall) where to-be-
remembered content must be internally-generated as opposed to being perceptually available. 

Interestingly, there is evidence that content representations in angular gyrus are actually stronger 
during cued recall than during perception (Favila et al., 2018; Long & Kuhl, 2021; Xiao et al., 
2017). It would therefore be informative to apply the analyses used here to more thoroughly 
compare content representations during recall versus perception. Another issue that is beyond 
the scope of the current study is the degree to which the effects reported here depend on the 
subjective experience of remembering versus the objective experience of stimulus repetition. A 
compelling body of evidence indicates that the angular gyrus is involved in (Hutchinson et al., 
2014; Kuhl & Chun, 2014; Ramanan et al., 2018) and even necessary for (Simons et al., 2010; 
Tibon et al., 2019; Yazar et al., 2014; Zou & Kwok, 2022) the subjective experience of 
remembering. In contrast, memory effects in OTC may be more closely related to objective 
effects of stimulus repetition (Sayres & Grill-Spector, 2006; Ward et al., 2013). Here, we were not 
able to tease these apart because the proportion of ‘miss’ trials (objectively ‘old’ but subjectively 
‘new’ trials) was very low. Finally, it would also be informative to consider the relative timing of 
content and memory representations across angular gyrus and OTC (Staresina & Wimber, 2019). 
While difficult to address with fMRI, intracranial electrophysiological measures have the potential 
to provide unique insight into these dynamics (Gonzalez et al., 2015). 
 In summary, our findings provide new insight into how the brain combines information 
about ‘what’ is being remembered with information about ‘whether’ something is being 
remembered. By directly contrasting memory and content effects across different brain regions, 
we show that there are multiple ways in which the brain combines these two forms of information. 
Our findings will hopefully inform and constrain theoretical accounts of parietal contributions to 
memory and inspire new, targeted research studies that further characterize how content and 
memory signals are combined in the brain. 
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