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ABSTRACT 18 

Converging, cross-species evidence indicates that memory for time is supported by hippocampal 19 
area CA1 and entorhinal cortex. However, limited evidence characterizes how these regions 20 
preserve temporal memories over long timescales (e.g., months). At long timescales, memoranda 21 
may be encountered in multiple temporal contexts, potentially creating interference. Here, using 22 
7T fMRI, we measured CA1 and entorhinal activity patterns as human participants viewed 23 
thousands of natural scene images distributed, and repeated, across many months. We show that 24 
memory for an image’s original temporal context was predicted by the degree to which 25 
CA1/entorhinal activity patterns from the first encounter with an image were re-expressed during 26 
re-encounters occurring minutes to months later. Critically, temporal memory signals were 27 
dissociable from predictors of recognition confidence, which were carried by distinct medial 28 
temporal lobe expressions. These findings suggest that CA1 and entorhinal cortex preserve 29 
temporal memories across long timescales by coding for and reinstating temporal context 30 
information.  31 
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INTRODUCTION 32 

Episodic memory fundamentally involves the ability to remember not only what happened in the 33 
past, but when it happened1. Indeed, placing memories in time critically enables experiences to 34 
be organized into personal narratives that span weeks, months, and years2. Yet, the majority of 35 
cognitive neuroscience studies of human memory only consider memory across relatively short 36 
timescales (overwhelmingly, within a single experimental session/day). At longer timescales, 37 
one of the particular challenges to retaining precise temporal memories is that previously-38 
encoded information is likely to be ‘re-encountered’ in new temporal contexts3. For example, 39 
remembering precisely when you first saw a particular movie may be complicated by re-40 
watching that movie at a later date. Understanding how memories of specific temporal contexts 41 
are preserved when experiences are repeated over long timescales (days, weeks, months) requires 42 
identifying not only the neural structures that are involved, but the mechanistic contributions that 43 
these structures support. 44 

Broadly, the medial temporal lobe (MTL) system is known to critically support episodic 45 
memory4–6. However, within the MTL system, hippocampal subfield CA1 and entorhinal cortex 46 
(ERC) have emerged as being particularly important for processing and remembering temporal 47 
information7–11. For example, so-called “time cells” in CA1 and ERC have been shown to code 48 
for elapsed time in rodents12–15, with similar effects recently observed in the human hippocampus 49 
and ERC16,17. Putatively, time cells in CA1 and ERC provide the basis for temporal context 50 
representations that allow individual memories to be ‘placed’ in time18. While human fMRI 51 
studies have provided important evidence that activation levels in the hippocampus and ERC are 52 
associated with the precision of temporal memory19,20, measures of activation, alone, are not well 53 
suited to measuring temporal context representations. Rather, temporal context is thought to be 54 
reflected in distributed patterns of activity or ensemble representations21,22.  55 

Importantly, to the extent that CA1 and ERC do code for the temporal context in which events 56 
occur, there are multiple—and mechanistically distinct—ways in which these representations 57 
might preserve temporal memories. On the one hand, when a given stimulus is re-encountered in 58 
a new temporal context, CA1 and/or ERC may encode the new temporal context as distinct from 59 
the original context23. Forming distinct temporal context representations across repeated 60 
encounters is potentially beneficial to temporal memory by improving discriminability of these 61 
contexts24. On the other hand, when a stimulus is re-encountered in a new temporal context, this 62 
potentially creates an opportunity to reinstate a prior temporal context25,26. For example, when a 63 
familiar movie is on television, this might trigger recall of the original temporal context in which 64 
the movie was encountered. Reinstatement of the original temporal context may strengthen that 65 
context representation and thereby preserve memory for when the movie was first encountered. 66 
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Critically—and in contrast to a context distinctiveness account—a context reinstatement account 67 
makes the prediction that, when a stimulus is re-encountered, memory for the original temporal 68 
context will be preserved to the extent that activity patterns in CA1 and/or ERC are similar to (or 69 
reinstate) the activity patterns expressed when the stimulus was first encountered. 70 

Here we sought to characterize the neural mechanisms that preserve temporal context memory 71 
when events are re-encountered across long timescales (days to months). To address this, we 72 
describe a massive human fMRI experiment in which participants encountered thousands of 73 
natural scene images repeatedly during 30-40 scan sessions distributed over an 8-10 month 74 
window27. After all scans were completed, participants performed a temporal memory task in 75 
which a subset of images were presented and participants were asked to estimate when each 76 
image was first encountered (on a scale that ranged from days to months in the past). The focus 77 
of our analyses was to test whether temporal memory precision was predicted by the degree to 78 
which patterns of neural activity expressed when images were first encountered were re-79 
expressed when these images were re-encountered (a potential marker of context reinstatement). 80 
By leveraging the ultra-high field strength (7T) and high spatial resolution (1.8-mm) of our 81 
imaging protocol, we interrogated subregions of the hippocampus (including CA1) and 82 
surrounding MTL structures (including ERC). This experimental design yielded an 83 
unprecedented ability to understand how temporally-precise memories are preserved over long 84 
timescales that are critical for real-world memories. 85 

RESULTS 86 

Precise temporal memory persists across months  87 

Eight participants completed two experimental phases (Fig. 1a). The first phase consisted of a 88 
continuous recognition task conducted during fMRI scanning. The second phase consisted of a 89 
final memory test conducted outside of the scanner. During the continuous recognition phase, 90 
participants viewed 9,209-10,000 natural scene images across 30-40 fMRI sessions and indicated 91 
whether or not each image had previously been encountered at any point in the experiment (Fig. 92 
1b). Each image was presented up to three times with these exposures pseudo-randomly 93 
distributed across the entire experiment (Fig. 1d). At least two days after completion of the last 94 
session of the continuous recognition phase, participants completed a final memory test on a 95 
subset of images (Fig. 1c). Each trial of the final memory test began with a recognition memory 96 
judgment on a 1-6 confidence scale (1: ‘high confidence new’, 6: ‘high confidence old’). For 97 
images judged to be ‘old’, participants were also prompted to make frequency and temporal 98 
memory judgments. For the frequency judgment, participants were asked how many times they 99 
had seen the image during the continuous recognition phase (1, 2, 3, or 4 or more). For the 100 
temporal memory judgment, which is the primary focus of the present study, participants were 101 
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instructed to position a marker along a continuous timeline when in the experiment each image 102 
was first encountered. 103 

 104 

 105 

Figure 1. Experimental design. (a) Overview of experimental procedures: participants completed two 106 
experimental phases. The continuous recognition phase consisted of 30-40 separate fMRI scan sessions 107 
distributed across 8-10 months. Across these sessions, thousands of natural scene images were pseudo-108 
randomly presented up to three times. After all of the scan sessions were completed, participants 109 
performed a final memory test on a subset of images outside of the scanner on a separate day (2-7 days 110 
later). (b) Continuous recognition test. While maintaining central fixation, participants viewed sequences 111 
of natural scenes and reported whether each image had been seen at any previous point in the experiment. 112 
(c) Final memory test. Each trial of the final memory test began with a recognition memory judgment in 113 
which participants made a recognition decision together with a confidence rating from 1-6 (1: ‘high 114 
confidence new’, 6: ‘high confidence old’). For each image judged as ‘old’, a frequency test followed in 115 
which participants were asked how many times they had seen the image before (1, 2, 3, or 4 or more). 116 
Following that, participants were asked to indicate on a continuous timeline when the image in question 117 
was first encountered (temporal memory test; see Methods for more information). (d) Timeline of an 118 
example image. Each old image used in the final memory test was presented three times during the 119 
continuous recognition phase and associated with four temporal lags. The first fMRI scan session of the 120 
continuous recognition phase for each participant corresponds to Day 0. All temporal lags were quantified 121 
in seconds and transformed with the natural logarithm for further analyses. (e) Behavioral measure of 122 
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temporal memory. Item-wise temporal memory error was quantified as the difference between the ranked 123 
actual and ranked estimated temporal positions. 124 

 125 

All participants performed above chance on the recognition memory test (Fig. 2a; hit rate greater 126 
than false alarm rate: t! = 8.24, p < 0.001, two-tailed paired-sample t-test). Separating the data 127 
across three confidence levels (low, medium, and high) revealed that recognition memory 128 
accuracy (d’) increased with levels of subjective confidence (Fig. 2b; F",$% = 16.66, p < 0.001, 129 
one-way repeated-measures ANOVA). Results for the frequency test are reported in 130 
Supplementary Fig. 1. 131 

Of critical interest was the accuracy of temporal memory judgments, which required participants 132 
to recall the first time each scene was encountered over the course of the up to 10-month 133 
experiment. To reduce the effects of non-linearity in temporal memory judgments (e.g., response 134 
bias towards the center of the timeline, see Methods and Supplementary Fig. 2), we converted 135 
both the actual (objective) and the estimated (subjective) temporal positions to ranked positions 136 
for further analyses. Based on the ranks, we quantified item-wise temporal memory error by 137 
comparing the distance between the actual and estimated ranked positions (Fig. 1e). To 138 
determine temporal accuracy across participants, we ran a mixed-effects linear regression model 139 
for estimated against actual temporal position with participants as a random effect. Results from 140 
this analysis indicated that participants were able to place images in their correct temporal 141 
contexts with above-chance accuracy (Fig. 2c; group-level 𝛽 = 0.302, p < 0.001). We further 142 
evaluated temporal memory accuracy for each participant using a permutation test (see 143 
Methods). This analysis revealed that temporal memory performance was above chance for 144 
seven out of the eight participants (Fig. 2d; ps < 0.01; one participant: p = 0.083). The relatively 145 
high accuracy of the temporal memory judgments is notable when considering that participants 146 
were not informed that they would be tested on temporal memory until after all of the continuous 147 
recognition sessions. 148 

 149 
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 150 

Figure 2. Behavioral results. (a) Recognition performance for each participant quantified by hit rate and 151 
false alarm (FA) rate. Hit rates were reliably above FA rates (t! = 8.24, p < 0.001, two-tailed t-test), 152 
indicating above-chance recognition memory. (b) Overall recognition performance (d’) separated by 153 
confidence levels. Recognition accuracy increased with subjective confidence levels (one-way repeated-154 
measures ANOVA; F2,14 = 16.66, p < 0.001). (c) Correlation between estimated and actual temporal 155 
positions. Participants showed above-chance accuracy in temporal memory judgments (group-level 𝛽 = 156 
0.302, p < 0.001). Each color shaded line indicates a participant. (d) Individual participant’s temporal 157 
memory performance compared to chance level. Density plots compare the standard error of the mean 158 
(SEM) of the observed temporal memory error (yellow line) to the null distribution (blue density; 159 
estimated by permuting estimated temporal judgments across images within each participant, n = 1,000 160 
permutations). Throughout the figure, error bars reflect mean ± s.e.m.; dots or colors denote individual 161 
participants (n=8); *** p < 0.001. 162 
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CA1 and entorhinal representational similarity across exposures predicts temporal 163 
memory precision 164 

The primary goal of the present study was to investigate whether the similarity (or dissimilarity) 165 
of MTL representations across repeated stimulus encounters predicts the accuracy of temporal 166 
memory judgments across long timescales. Accordingly, we examined the representational 167 
similarity between exposures of each of the images that were subsequently probed in the 168 
temporal memory test. Given our a priori interest in MTL structures, we focused on two 169 
manually segmented subfields of the hippocampus (CA1 and CA2/3/dentate gyrus, hereafter 170 
CA2/3/DG), along with ERC, perirhinal cortex (PRC), and parahippocampal cortex (PHC) (Fig. 171 
3a). For each region of interest (ROI), we correlated the activity patterns between each pair of 172 
exposures of the same image (i.e., r(E1, E2), r(E2, E3), and r(E1, E3)). As a first step, we 173 
averaged across these pairwise correlations to generate a single similarity metric (across 174 
exposures) for each image (Fig. 3b). We then compared these similarity metrics for images 175 
associated with high versus low temporal memory precision (based on a participant-specific 176 
median split). Statistical significance of the difference between high and low temporal memory 177 
precision was evaluated using a permutation test that shuffles the images’ temporal memory 178 
identities within each participant. Among the set of MTL ROIs, CA1 and ERC exhibited 179 
significantly greater pattern similarity across repeated exposures for high-precision images 180 
relative to low-precision images (Fig. 3c; CA1: p = 0.004; ERC: p = 0.004; permutation tests). 181 
The fact that temporal memory precision was associated with greater pattern similarity across 182 
exposures in CA1 and ERC is consistent with a context reinstatement account, wherein the 183 
original temporal context is reinstated (and strengthened) during subsequent exposures. 184 

We next performed several control analyses. First, because temporal memory precision increased 185 
as a function of the session position in which the first exposure occurred (recency effect, see 186 
Supplementary Fig. 3), we repeated the analyses for CA1 and ERC while explicitly accounting 187 
for temporal lag information (Fig. 1d). Specifically, we ran a mixed-effects logistic regression 188 
model that predicted temporal memory precision from pattern similarity across exposures with 189 
temporal lags (lag 0-3) included as fixed effects and participant included as a random effect. This 190 
analysis confirmed that the relationship between pattern similarity in CA1/ERC and temporal 191 
memory precision remained significant when accounting for temporal lag information (Fig. 3d; 192 
CA1: 𝛽 = 2.134, p = 0.005; ERC: 𝛽 = 3.207, p = 0.008). 193 

Second, we repeated the foregoing analyses for an early visual cortex ROI (V1) that would be 194 
sensitive to low-level visual information but would not be expected to code for temporal context. 195 
As expected, V1 pattern similarity across exposures did not differ for high- versus low-precision 196 
images (Fig. 3c; p = 0.25; permutation test) and was not a predictor of temporal memory 197 
precision (Fig. 3d; p = 0.376; logistic mixed-effects regression). Likewise, an additional, 198 
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exploratory whole-brain analysis did not identify any cortical areas outside the MTL for which 199 
the relationship between pattern similarity and temporal memory was significant after correction 200 
for multiple comparisons (Supplementary Table 1). 201 

 202 

 203 

Figure 3. CA1 and entorhinal representational similarity predicted temporal memory precision, but 204 
not recognition confidence. (a) Manually drawn ROIs for MTL subregions of an example participant: 205 
CA1 (purple), CA2/3/DG (red), ERC (yellow), PRC (blue), and PHC (green). LH/RH: left/right 206 
hemisphere. (b) Schematic depiction of representational similarity analysis. (c) Pattern similarity 207 
difference between high- and low-precision images (median split) across MTL subregions and a control 208 
early visual region (V1). CA1 and ERC showed greater pattern similarity across exposures for high-209 
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precision images relative to low-precision images (CA1: p = 0.004; ERC: p = 0.004; permutation tests, n 210 
= 1,000). CA2/3/DG showed similar effect but did not survive correction for multiple comparisons 211 
(p(uncorrected) = 0.023). (d) Pattern similarity across exposures as a function of temporal memory 212 
precision while accounting for temporal lag information. Pattern similarity across repeated exposures in 213 
CA1 and ERC predicted temporal memory precision while accounting for temporal lag information 214 
(CA1: 𝛽 = 2.134, p = 0.005; ERC: 𝛽 = 3.207, p = 0.008). A similar effect was also observed in 215 
CA2/3/DG (p(uncorrected) = 0.037), but did not survive correction for multiple comparisons. (e) Pattern 216 
similarity across exposures as a function of recognition confidence while accounting for temporal lag 217 
information. Pattern similarity across repeated exposures in PHC predicted recognition confidence (𝛽 = 218 
0.799, p < 0.001). Throughout the figure, error bars reflect mean ± s.e.m.; dots denote individual 219 
participants; ~p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001. Parentheses indicate ROIs that did not 220 
survive multiple comparison correction. 221 

 222 

Third, and critically, we next tested whether the effects observed in CA1 and ERC were specific 223 
to temporal memory. To this end, we repeated the same mixed-effects regression model but now 224 
used recognition confidence as the dependent variable instead of temporal precision. Neither 225 
CA1 nor ERC exhibited significant relationships between pattern similarity and recognition 226 
confidence (ps > 0.10). In contrast, pattern similarity was a significant predictor of recognition 227 
confidence in PHC (Fig. 3e; 𝛽 = 0.799, p < 0.001). A follow-up control analysis which included 228 
recognition confidence together with pattern similarity as fixed effects in a mixed-effects 229 
regression model confirmed that pattern similarity in CA1 and ERC predicted temporal memory 230 
precision when accounting for recognition confidence (ps < 0.001). These results provide 231 
important evidence that the relationships between CA1/ERC pattern similarity and temporal 232 
memory precision were not a secondary consequence of stronger overall memory for the images; 233 
rather, pattern similarity across exposures in CA1 and ERC specifically predicted better memory 234 
for when (in time) images were first encountered. 235 

Similarity between first and second exposures uniquely predicts temporal memory 236 

Having demonstrated that CA1 and ERC pattern similarity across repeated exposures predicts 237 
temporal memory for an image’s first exposure, we next sought to determine which pair of image 238 
exposures was most predictive of temporal memory. From a context reinstatement perspective, 239 
similarity between the first exposure (E1) and the second exposure (E2) should be uniquely 240 
important because E2 provides the first opportunity to reinstate the temporal context from E1. To 241 
test this, we first compared pattern similarity for high- and low-precision images for each pair of 242 
image exposures (E1-E2, E2-E3, and E1-E3). Statistical significance of the difference between 243 
high- and low- precision images for each exposure pair was computed a permutation analysis in 244 
which, for each participant and exposure pair, we randomly shuffled the images’ temporal 245 
memory precision labels. For both CA1 and ERC, E1-E2 similarity was significantly greater for 246 
high- than low-precision images (Fig. 4a; CA1: p = 0.015; ERC: p = 0.007; permutation tests). 247 
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However, both regions also exhibited similar effects for E2-E3 similarity (Fig. 4a; CA1: p = 248 
0.025; ERC: p = 0.036, permutation tests). Neither region exhibited a significant effect for E1-E3 249 
similarity (Fig. 4a; ps > 0.28). 250 

To further explore this pattern of results, we performed three follow-up sets of analyses. First, in 251 
order to control for potential temporal lag effects (Supplementary Fig. 3), we ran a mixed-effects 252 
logistic regression model that predicted temporal memory from pattern similarity of each 253 
exposure pair (E1-E2, E2-E3 and E1-E3 as separate dependent variables in one regression 254 
model) while including lag information. For both CA1 and ERC, E1-E2 similarity significantly 255 
predicted temporal memory (Fig. 4b; CA1: 𝛽 = 1.048, p = 0.014; ERC: 𝛽 = 1.565, p = 0.022). 256 
Effects were marginally significant for E2-E3 similarity (ps < 0.10), and not significant for E1-257 
E3 similarity (ps > 0.68).  258 

Second, in order to more directly assess whether E1-E2 similarity contained predictive power 259 
above and beyond that of other exposure pairs, we compared the performance of several models 260 
that did or did not include various exposure pairs. That is, we tested whether model performance 261 
was significantly improved when E1-E2 similarity was added to models that only included E2-262 
E3 and E1-E3 similarity. For both CA1 and ERC, adding E1-E2 as a predictor significantly 263 
improved the model’s performance (CA1: 𝜒" = 6.147, p = 0.013; ERC: 𝜒" = 5.315, p = 0.021). 264 
In contrast, adding E2-E3 and E1-E3 similarity as predictors to models with just E1-E2 similarity 265 
did not improve the model’s performance (ps > 0.15). These results established that E1-E2 266 
similarity was uniquely important for subsequent temporal memory judgments, as would be 267 
predicted by a context reinstatement account.  268 

Third, it is possible that these patterns of results reflect the contribution of some overall 269 
facilitation to memory provided by E1-E2 similarity. However, although PHC pattern similarity 270 
across exposures was highly predictive of subsequent recognition memory confidence (Fig. 3e), 271 
this effect was not driven by E1-E2 similarity (Fig. 4c; p = 0.482, permutation test; Fig. 4d; p = 272 
0.225; linear mixed-effects regression). Instead, E1-E3 similarity in PHC significantly predicted 273 
recognition confidence (Fig. 4c; p = 0.002; Fig. 4d; 𝛽 = 0.473, p = 0.018). Taken with these 274 
above results, these findings provide a qualitative dissociation between the predictors of 275 
temporal memory versus recognition memory. That is, they are consistent with the interpretation 276 
that reinstating the temporal context of the first exposure is critical for remembering when that 277 
image was first encountered, but it is relatively less important for recognizing whether an image 278 
was previously encountered. 279 

 280 
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 281 

Figure 4. Pattern similarity between the first and second exposure in CA1 and ERC was uniquely 282 
important for temporal memory. (a) CA1/ERC pattern similarity between high- and low-precision 283 
images for each pair of image exposures. CA1 and ERC showed greater pattern similarity for high-284 
precision images relative to low-precision images in E1-E2 (CA1: p = 0.015; ERC: p = 0.007; 285 
permutation test, n = 1,000) and E2-E2 (CA1: p = 0.025; ERC: p = 0.036; permutation test). (b) PHC 286 
pattern similarity between hits and misses in recognition memory for each pair of image exposures. PHC 287 
showed greater pattern similarity for hits relative to misses in E1-E3 (p = 0.002; permutation test, n = 288 
1,000). (c) CA1/ERC pattern similarity as a function of temporal memory precision for each pair of image 289 
exposures while accounting for temporal lag information. For both CA1 and ERC, E1-E2 pattern 290 
similarity was significantly predictive of temporal memory precision (CA1: 𝛽 = 1.048, p = 0.014; ERC: 𝛽 291 
= 1.565, p = 0.022). (d) PHC pattern similarity as a function of recognition memory confidence for each 292 
pair of image exposures while accounting for temporal lag information. Recognition confidence was 293 
predicted by E1-E3 pattern similarity in PHC (𝛽 = 0.473, p = 0.018). Error bars reflect mean ± s.e.m.; 294 
dots denote individual participants; ~p < 0.10; *p < 0.05; **p < 0.01. 295 

 296 

CA1 and ERC predict temporal memory via image-specific representations 297 

While all of the preceding representational similarity analyses were performed by correlating 298 
activity patterns across repeated exposures of the same stimulus (i.e., image-specific 299 
correlations), these analyses do not guarantee that the information that predicted temporal 300 
memory precision was specific to individual images. Namely, it is possible that temporal 301 
memory precision benefited from generic memory processes or attentional states that generalized 302 
across images (e.g., states optimized for memory encoding28). While this possibility would still 303 
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support a role for CA1 and ERC in encoding temporal information, a temporal context 304 
reinstatement account fundamentally predicts reinstatement of the specific temporal context in 305 
which an image was encoded. 306 

To assess whether temporal memory was predicted by image-specific pattern similarity, we 307 
conducted two additional analyses (restricted to E1-E2 similarity). First, for all of the images 308 
tested in the temporal memory test, we permuted the E1-E2 mappings by shuffling images’ E2 309 
within each participant. We then calculated the resulting E1-E2 pattern similarity scores and a 310 
corresponding distribution of beta values reflecting the relationships with temporal memory (see 311 
Methods for details). Critically, for both CA1 and ERC, the relationship between ‘intact’ E1-E2 312 
similarity and temporal memory was significantly stronger (higher beta values) than the 313 
permuted values (Fig. 5a; CA1: p = 0.019; ERC: p = 0.025). These data provide important 314 
evidence that temporal memory precision was predicted by image-specific pattern similarity in 315 
CA1 and ERC. 316 

As a follow-up to the preceding analysis, we ran a final analysis to address whether apparent 317 
image-specific effects might be due to general memory states and/or differences in coarse 318 
temporal context information (i.e., session effects). Thus, for each image included in the 319 
temporal memory test (a ‘target’), we identified control images (‘foils’) such that the targets and 320 
foils shared the same E1 session number, but not scanning run (to avoid potential contamination 321 
from autocorrelation in the fMRI data), and the same E2 session number (but not run; Fig. 5b). 322 
To match recognition memory with targets, foils were only included in this analysis if they were 323 
correctly rejected at E1 and successfully recognized at E2 and E3 (see Methods for details). This 324 
allowed us to compute similarity between target E1 and target E2 (target similarity) and target 325 
E1 and foils E2 (foil similarity). The difference between these measures (target similarity - foil 326 
similarity) was then used as a predictor of temporal memory precision. Indeed, this similarity 327 
difference score significantly predicted temporal memory precision for CA1 (Fig. 5c; 𝛽 = 0.893, 328 
p = 0.028), with a similar but marginal effect for ERC (Fig. 5c; 𝛽 = 1.240, p = 0.058). These 329 
findings lend further support to the idea that temporal memory precision was related to image-330 
specific pattern similarity measures and specifically argue against potential confounds due to 331 
generic memory-related processes or session effects. The fact that these effects held when 332 
carefully controlling for session effects (albeit marginally in ERC) is notable because it provides 333 
evidence against the possibility that pattern similarity only captured coarse-level temporal 334 
context (session information). Rather, to the extent that the pattern similarity measure captured 335 
temporal context information, these findings suggest a relatively ‘local’ temporal context 336 
representation that differentiated between images within the same session (day). 337 

 338 
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 339 

Figure 5. Representational image-specificity analyses. (a) Intact compared to permuted similarity 340 
effect. E1-E2 pattern similarity compared to permuted similarity exhibited a stronger effect on temporal 341 
memory precision in both CA1 and ERC (CA1: p = 0.019; ERC: p = 0.025; permutation tests, n = 1,000). 342 
(b) Schematic illustration showing how target similarity and foil similarity were computed for an example 343 
image (see Methods for details). (c) Image-specific pattern similarity (target similarity - foil similarity) as 344 
a function of temporal memory precision. Image-specific pattern similarity in CA1 was significantly 345 
predictive of temporal memory precision (𝛽 = 0.893, p = 0.028). ERC showed a similar but marginal 346 
relationship between image-specific pattern similarity and temporal memory (𝛽 = 1.240, p = 0.058). Error 347 
bars reflect mean ± s.e.m.; ~p < 0.10; *p < 0.05. 348 

 349 

DISCUSSION 350 

The ability to remember when events occurred in time is fundamental to human experience. 351 
However, retaining precise temporal memories is complicated by the fact that real-world 352 
episodic memories span long timescales (days, weeks, months and beyond) and by the fact that 353 
events may recur in multiple contexts over those long timescales (e.g., a movie you have viewed 354 
several times over the past year). To date, there is remarkably little evidence characterizing how 355 
the human brain preserves temporal memories in the face of these challenges. Here, we show 356 
that when events recur over long timescales (at lags up to several months), the re-expression of 357 
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distributed, event-specific activity patterns in CA1 and ERC preserves memory for the original 358 
temporal context of an event (i.e., memory for when an event first occurred). These findings are 359 
consistent with and bridge between prior human and rodent studies implicating CA1 and ERC in 360 
temporal processing and temporal memory. However, our findings also go beyond existing 361 
evidence by providing a mechanistic account of how CA1 and ERC preserve temporal memories 362 
and demonstrating these relationships at uniquely long timescales. 363 

While there is a rich history characterizing temporal memory in human behavioral and 364 
neuroimaging studies29,30, it is striking how few of these studies have considered temporal 365 
memory across timescales that exceed a single experimental session. Indeed, our approach of 366 
testing temporal memory for images that were distributed across dozens of experimental 367 
sessions/scans spanning 8-10 months is unprecedented. Considering that the overwhelming 368 
majority of real-world episodic memories span days, weeks, months and years, it is imperative to 369 
understand the neural mechanisms that support temporal memory at these timescales. Although it 370 
is intuitively obvious that humans can and do retain temporal memories over long timescales, it 371 
is nonetheless remarkable that participants in the current study were generally successful at 372 
recalling the initial temporal context for images presented at the final memory test given that (a) 373 
these images were drawn from a pool of tens of thousands of images, (b) the delay between the 374 
initial exposure and the final memory test ranged from days to almost a year, and (c) each image 375 
was presented in multiple temporal contexts, creating potential interference. Thus, by simulating 376 
the challenges that are inherent to real-world temporal memory, our experimental paradigm 377 
provides a unique opportunity to characterize the underlying neural mechanisms. 378 

By leveraging representation-based analyses to track patterns of activity across repeated stimulus 379 
exposures and distinct temporal contexts, we were able to gain critical insight into the 380 
mechanisms through which CA1 and ERC contribute to temporal memory. In particular, our 381 
findings strongly align with a context reinstatement account. According to temporal context 382 
models25,26, context representations—reflected in distributed patterns of neural activity—383 
gradually change over time and are reinstated when an item is subsequently remembered31–37. 384 
From this perspective, our finding that greater pattern similarity across exposures preserved 385 
memory for an event’s original temporal context can be explained in terms of the original 386 
context representation (elicited during E1) being reinstated during subsequent exposures (E2, 387 
E3). In fact, this account also readily explains our finding that similarity between the first and 388 
second exposure (E1, E2) was uniquely important for temporal memory. Namely, E2 represented 389 
the first potential ‘reminder’ of E1’s temporal context. Interestingly, although we tested for re-390 
expression of E1’s activity patterns by explicitly re-exposing participants to the same stimulus 391 
multiple times (E2, E3), our findings likely generalize to situations where stimuli are not 392 
explicitly re-exposed (or re-encountered). Indeed, human neuroimaging studies (unrelated to 393 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2022.08.31.506090doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.506090
http://creativecommons.org/licenses/by-nc-nd/4.0/


temporal memory) have found that offline, spontaneous reinstatement of episodic memories not 394 
only occurs, but it strengthens memories in much the same way that online, cued reinstatement 395 
does38. 396 

While a context reinstatement account makes a clear prediction that better memory for the 397 
original temporal context should be associated with greater representational similarity across 398 
exposures, it is notable that a memory interference account23 suggests an entirely opposite 399 
prediction: that temporal memory would benefit from greater contextual distinctiveness across 400 
exposures (i.e., less similarity). More specifically, greater contextual distinctiveness would 401 
putatively be expected to reduce interference between the various temporal contexts in which an 402 
event occurred (E1, E2, E3). That said, there are several examples in the memory interference 403 
literature where reinstatement of prior experiences during new learning can, in fact, protect 404 
memories from interference39,40. Moreover, it is important to note that a context reinstatement 405 
account for CA1 and ERC does not exclude the possibility that other MTL regions (e.g., CA3) 406 
might simultaneously contribute to temporal memory by emphasizing differences between 407 
temporal contexts41–44. 408 

The fact that we specifically identified CA1 and ERC as being important for temporal memory at 409 
long timescales—and the implication that these regions supported temporal context 410 
reinstatement—is striking in light of accumulating evidence documenting time cells within 411 
rodent CA1 and ERC12–14. It has been speculated that ensembles of time cells allow for the 412 
coding of gradually-drifting temporal context representations which become bound to individual 413 
events18 and reinstated when events are remembered25,26. Moreover, while much of the evidence 414 
for time cells has focused on very short timescales (seconds), there is evidence that time cell 415 
ensembles can reflect temporal information over multiple, longer timescales—from minutes to 416 
days45. Here, we did not directly measure or identify time cells, but the representation-based 417 
analyses we employed are well-suited to capturing gradually-changing context 418 
representations24,32,33,46–49. In contrast, although several prior studies of human memory have also 419 
implicated CA1 and ERC in memory for when events occurred19,20, most of these studies have 420 
not employed representation-based analyses and, therefore, are not amenable to testing or 421 
capturing temporal context representations. Thus, our approach and findings uniquely bridge 422 
between evidence of time cells in rodents, theoretical models of temporal context, and prior 423 
studies of temporal memory in humans. 424 

An additional essential consideration in understanding neural mechanisms that specifically relate 425 
to temporal memory is to establish that any apparent effects related to temporal memory were 426 
not derivative from more general effects of memory strength. Specifically, as memories decay 427 
over time, temporal judgments could potentially be inferred from the strength of memories 428 
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themselves50–52. This is of particular concern given the very long timescales involved in the 429 
current study. However, several theoretical perspectives propose that memory for time is 430 
dissociable from memory strength30,53,54. Here, our final memory test separately measured 431 
recognition confidence (a proxy for overall memory strength) and temporal memory, allowing us 432 
to conduct several targeted analyses aimed at teasing apart these two expressions of memory. 433 
First, we found that the relationships between CA1/ERC and temporal memory precision 434 
remained significant in a regression model that included recognition confidence as a covariate. 435 
Second, consistent with prior arguments that distinct MTL subregions are involved in ‘item-436 
based’ versus ‘context-based’ memory55, we found that pattern similarity measures in PHC 437 
predicted recognition confidence but not temporal memory, whereas pattern similarity measures 438 
in CA1 and ERC predicted temporal memory but not recognition confidence. Finally, when 439 
considering pattern similarity across specific pairs of image exposures, temporal memory 440 
(defined here as memory for when the first exposure occurred) was best predicted by pattern 441 
similarity between the first and second exposures, consistent with a context reinstatement 442 
account. In contrast, recognition confidence was best predicted by pattern similarity between the 443 
first and third exposures, potentially indicating that the last (third) exposure was relatively more 444 
influential to memory strength (also see Supplementary Fig. 3). Together, these data points 445 
provide important, converging evidence that temporal memory judgments in the current study 446 
were not derived from the overall memory strength. More generally, our findings reinforce 447 
theoretical accounts that emphasize the distinction between memory for ‘when’ an event 448 
occurred versus ‘whether’ an event occurred5,6,56,57. 449 

In conclusion, here we show that memory for the temporal context in which an event initially 450 
occurred is preserved via the re-expression of activity patterns in human CA1 and ERC. 451 
Critically, we show that these dynamics operate across—and support memory at—long 452 
timescales (from days to months). These findings complement yet significantly advance existing 453 
evidence from rodents and humans implicating the hippocampal-entorhinal system in 454 
representing and remembering time. In particular, our findings suggest that distributed patterns 455 
of activity in CA1 and ERC encode and reinstate temporal context information, thereby 456 
preserving memory for when events occurred. 457 

  458 
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METHODS 481 

Participants 482 

Eight participants took part in the study (two males, six females; age range: 19–32). All 483 
participants were right-handed with no known cognitive deficits nor color blindness and with 484 
normal or corrected-to-normal vision. Participants were naïve to the experimental manipulation 485 
and were not involved in the design nor planning of the study. Informed written consent was 486 
obtained from all participants before the start of the study, and the experimental protocol was 487 
approved by the University of Minnesota Institutional Review Board. 488 

Design and procedure 489 

Data used in this study were collected as part of the Natural Scenes Dataset (NSD; 490 
http://naturalscenesdataset.org), and included two parts: a continuous recognition phase 491 
conducted in the fMRI scanner and a behavioral final memory phase (Fig. 1a). 492 

Continuous recognition phase. A detailed description of the continuous recognition phase has 493 
been reported in a previous publication27. Briefly, for each participant, the continuous 494 
recognition phase was split across 40 scan sessions in which 10,000 distinct color natural scenes 495 
would be presented three times spaced pseudo-randomly over the course of all scan sessions. 496 
Each scan session consisted of 12 runs (750 trials). Distributions of image presentations were 497 
controlled such that both short-term and long-term re-exposures were probed (see Stimuli section 498 
below). Four of the participants completed the full set of 40 NSD scan sessions. Due to 499 
constraints on participant and scanner availability, each of the other four participants completed 500 
30-32 scan sessions. In these collected data, each participant viewed 9,209-10,000 distinct 501 
images and participated in 22,500-30,000 trials. Each trial lasted 4 s, consisting of the 502 
presentation of an image for 3 s and a following 1-s gap. Participants were instructed to perform 503 
a continuous recognition task in which they reported whether the current image had been seen at 504 
any previous point in the experiment. 505 

Final memory phase. At least two days (range: 2-7 days) after completion of the continuous 506 
recognition phase, a final memory test was administered outside of the scanner. Participants were 507 
not informed about the final memory test in advance. During the final memory phase, 508 
participants viewed a subset of old images (220 per participant) from the continuous recognition 509 
phase randomly intermixed with novel images (100 per participant) and completed different 510 
types of memory probes. The final memory phase consisted of 320 trials, with up to three 511 
judgements per trial. Each trial began with a recognition test in which participants performed an 512 
old or new judgment with a confidence rating on a scale of 1 to 6 (1: ‘high confidence new’, 2: 513 
‘medium confidence new’, 3: ‘low confidence new’, 4: ‘low confidence old’, 5: ‘medium 514 
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confidence old’, 6: ‘high confidence old’). For images judged as “old”, a frequency test followed 515 
in which participants were asked to indicate how many times they had seen each image (1, 2, 3, 516 
or 4 or more times). Following the frequency test, participants performed a temporal memory test 517 
using a timeline. In this test, participants were asked to indicate, on a continuous timeline with 518 
tick marks to represent each session, when in the experiment they thought each image was first 519 
encountered (Fig. 1c, right). The length and labels of the timeline vary across participants, 520 
depending on how many sessions they completed in the continuous recognition phase. 521 
Participants were encouraged to use the full length of the scale, with the left endpoint 522 
representing the beginning of the continuous recognition phase and the right endpoint 523 
representing the end. Participants used a cone to mark the temporal location on the line and were 524 
instructed to indicate their confidence in response via adjusting the size of the cone, with smaller 525 
cones representing higher confidence and bigger cones representing lower confidence (see 526 
Supplementary Video 1 for depiction of example trials). Given the primary focus of the present 527 
study concerns temporal memory precision, we only analyzed the estimates of temporal location 528 
as illustrated in Fig. 1c. All tests in the final memory phase were self-paced with a timeout of 30 529 
s. 530 

Stimuli 531 

All images used in this study were taken from the Microsoft Common Objects in Context 532 
(COCO) database58. 533 

Continuous recognition phase. For the continuous recognition phase, a total of 73,000 images 534 
were prepared with the intention that each participant would view 10,000 distinct images (9,000 535 
unique images and 1,000 shared images across participants) three times each over the course of 536 
40 scan sessions. To prevent the recognition task from becoming too difficult (and risking loss of 537 
morale), each image was randomly placed three times on a circle according to a probability 538 
distribution created by mixing a relatively narrow von Mises distribution and a uniform 539 
distribution. Across all scan sessions, the mean number of distinct images shown once, twice, 540 
and all three times within a typical session is 437, 106, and 34, respectively. 541 

Final memory phase. For the final memory phase, a total of 320 images were used for each 542 
participant, including 220 old images viewed in the continuous recognition phase and additional 543 
100 novel images from the COCO dataset. All old images used in the final memory phase were 544 
selected from the set of images that a given participant saw each image three times during fMRI 545 
scanning. There were two additional sets of criteria to select the old images. First, 120 out of the 546 
220 old images were selected based on three main criteria: (1) Each image exposure was judged 547 
with correct responses in the continuous recognition phase, that is correct rejection, hit, and hit 548 
for the first, second, and third exposure, respectively. (2) To promote the overall temporal 549 
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memory performance, images were first selected based on the session location of their first 550 
exposure, with approximately half of these images were selected from the last eight scan sessions 551 
that each participant participated in (it was adjusted to last ten scan sessions for one participant to 552 
have enough trials given their performance in the continuous recognition phase), and the other 553 
half were selected from the rest of the scan sessions. (3) For each half, images were then selected 554 
based on the spacing between exposures, with one-third with all three exposures within one scan 555 
session, one-third with the last two exposures in the same session, and the rest either with the 556 
first two exposures in the same session or with three exposures across different sessions. Second, 557 
the remaining 100 old images were selected to maximally span semantic space (see the NSD data 558 
paper27 for details). Briefly, this was done by computing shifted inverse frequency sentence 559 
embeddings for the sentence captions, and using a greedy approach to determine the subset of 560 
100 images that maximize the average distance between each image’s embedding and its closest 561 
neighbor.  562 

In order to equate prior memory outcome with the other images, only old images that received 563 
correct responses all three times in the continuous recognition phase were included in further 564 
analyses (143-170 images for each participant). 565 

MRI data acquisition and preprocessing 566 

The imaging data was collected as part of the NSD at the Center for Magnetic Resonance 567 
Research at the University of Minnesota. In brief, functional data and a few additional 568 
anatomical measures were collected using a 7T Siemens Magnetom passively-shielded scanner 569 
with a single-channel-transmit, 32-channel-receive RF head coil (Nova Medical, Wilmington, 570 
MA). Functional data was acquired using whole-brain gradient-echo echo-planar imaging (EPI) 571 
at 1.8-mm resolution and 1.6-s repetition time. In addition to the EPI scans, for the purposes of 572 
hippocampal segmentation, a high-resolution T2-weighted scan was acquired during one of the 573 
7T scan sessions. T1- and T2-weighted structural scans were collected using a combination of a 574 
3T Siemens Prisma scanner and a standard Siemens 32-channel RF head coil. 575 

Functional data were pre-processed by performing one temporal resampling to correct for slice 576 
time differences and one spatial resampling to correct for head motion within and across scan 577 
sessions, EPI distortion and gradient non-linearities. Two versions of the functional data were 578 
prepared: a 1.8-mm standard-resolution preparation (temporal-resolution, 1.333s) and an 579 
upsampled 1.0-mm high-resolution preparation (temporal-resolution, 1.000s). The latter 580 
preparation exploits the benefits of small head displacements and preserves as much spatial 581 
detail as possible59. Analyses in the current paper used the 1.0-mm high-resolution preparation of 582 
the NSD data. 583 
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Parameter estimates (beta weights) reflecting fMRI response amplitudes evoked by each trial 584 
were estimated using a general linear model (GLM) approach as described in the NSD data 585 
paper. We used the beta version 2 from NSD for all the analyses in the current paper. Briefly, the 586 
pre-processed time-series data was fitted multiple times with a single-trial GLM, each time using 587 
a different hemodynamic response function (HRF) from a library of HRFs. For each voxel, we 588 
identified which HRF provided the best fit to the data and used for that voxel the single-trial 589 
betas associated with that HRF. Betas were then converted to units of percent BOLD signal 590 
change by dividing amplitudes by the mean signal intensity observed at each voxel and 591 
multiplying by 100. 592 

Regions of interest (ROIs) 593 

The medial temporal lobe (MTL) ROIs were manually drawn on the high‐resolution T2 images 594 
obtained for each participant, following a 7T protocol for segmentation of MTL subregions60. 595 
Labels were defined on the raw high-resolution T2 volume, and were mapped via an affine 596 
transformation to subject-native anatomical space. The MTL ROIs included bilateral CA1, 597 
CA2/3/dentate gyrus, entorhinal cortex (ERC), perirhinal cortex (PRC), and parahippocampal 598 
cortex (PHC). Example MTL ROIs from one participant were depicted in Fig. 3a. We also 599 
included the primary visual cortex (V1) as a control region. The bilateral V1 ROI was manually 600 
drawn on cortical surfaces based on results of a population receptive field experiment from the 601 
NSD, and were then mapped to volumetric format. Cortical ROIs for the whole-brain parcel level 602 
analysis were defined by a multi-modal cortical parcellation from the Human Connectome 603 
Project61. 604 

Behavioral data analyses 605 

Overall performance for the temporal memory test was quantified by regressing each 606 
participant’s subjective estimate of when an image was first encountered against the actual 607 
(objective) time (Fig. 2c). Note that there is a general response bias among participants toward 608 
the center of the timeline (“raw estimated position", see Supplementary Fig. 2). To account for 609 
this response bias and potential non-linearity, the estimated and actual temporal positions used in 610 
all analyses in the current paper were converted to ranks according to each individual’s marked 611 
positions on the timeline and the actual temporal positions in the continuous recognition phase, 612 
respectively. To quantify item-wise temporal memory error, we calculated the absolute 613 
difference between the ranked estimated temporal position and the ranked actual position (Fig. 614 
1e). To test whether each participant had above-chance temporal memory performance, we 615 
compared the observed temporal memory error against a null distribution of permutations (1,000 616 
iterations), in which the subjective estimates were randomly shuffled across trials for each 617 
participant and the temporal memory error was recomputed for each iteration. To facilitate 618 
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subsequent analyses, for each participant we divided temporal memory trials into ‘high-619 
precision’ and ‘low-precision’ based on the absolute temporal memory error (median split). 620 

To control for temporal lag information and test for relationships between lag and subsequent 621 
memory performance (Supplementary Fig. 3), as illustrated in Fig. 1d, four temporal lags were 622 
calculated for each image: the lag between the beginning of the continuous recognition phase and 623 
the first exposure (lag 0), the lag between the first and second exposure (lag 1), the lag between 624 
the second and third exposure (lag 2), and the lag between the third exposure and the final 625 
memory phase (lag 3). The first scan session of the continuous recognition phase for each 626 
participant corresponds to Day 0. Because memory is observed to abide by an exponential rule 627 
rather than linear time62, all temporal lags were quantified by expressing time intervals in 628 
seconds and transforming these intervals with the natural logarithm. Lag effects were then tested 629 
using mixed-effects regression models with either recognition confidence or temporal memory 630 
precision as a dependent variable and with each temporal lag as a separate predictor. 631 

Representational similarity analyses 632 

Representational similarity analyses were conducted on functional data (single-trial betas) from 633 
the continuous recognition phase, and were performed by assessing patterns of neural activity 634 
across voxels within each ROI evoked during single trials. Pattern similarity of all possible 635 
exposure pairings (Fig. 3b; r(E1, E2), r(E2, E3), and r(E1, E3)) for each image was computed 636 
using Pearson correlation. The resulting correlation coefficients were then Fisher-transformed for 637 
further analyses. To avoid potential contamination of similarity from scanner-induced 638 
autocorrelation of signals, only correlations between image exposures that occurred across runs 639 
were considered (range of the trials excluded for each participant: 12-35).  640 

Image-specificity analyses 641 

We used two approaches to assess image-specificity in CA1 and entorhinal representations that 642 
predicted temporal memory. 643 

Intact versus shuffled pattern similarity analysis. Our first analysis tested whether temporal 644 
memory precision was predicted by image-specific pattern similarity (restricted to E1-E2 645 
similarity) in CA1 and ERC using images tested in the temporal memory test (which were a 646 
subset of the full image set). Specifically, we randomly shuffled the E1-E2 mappings within each 647 
participant, such that each image’s E1 was paired with a different image’s E2. We then 648 
computed the pattern similarity of these shuffled exposure pairs and the new corresponding 649 
temporal lags. The shuffled E1-E2 pattern similarity scores and temporal lag information were 650 
then submitted to a mixed-effects logistic regression model predicting temporal memory 651 
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precision. This procedure was performed 1,000 times, resulting in a null distribution of pattern 652 
similarity effects (betas values) for each ROI. 653 

Target versus foil pattern similarity analysis. Our second approach examined whether pattern 654 
similarity effects observed in CA1 and ERC were specific to individual images or were driven by 655 
general memory-related processes that could be shared across different images and/or differences 656 
in coarse temporal information (i.e., session effects). To do this, for each image included in the 657 
temporal memory test (a ‘target’), we identified control images (‘foils’) according to two criteria: 658 
(1) targets and foils shared the same E1/E2 session number, but not run number, respectively 659 
(Fig. 5a); (2) to control for generic memory states (recognition memory performance at each 660 
encounter), foils had to receive the same memory judgments as targets (i.e., to be responded 661 
correctly all three times), which were correctly rejected at E1 and hit at E2 and E3. We then 662 
computed pattern similarity between target E1 and target E2 (‘target similarity’) and target E1 663 
and foils E2 (‘foil similarity’). This selection procedure resulted in different numbers of foils for 664 
each target image. For images with two or more foils, we used the median value of those foil 665 
similarity scores. To index the extent to which pattern similarity captures image-specific 666 
representations, foil similarity was subtracted from target similarity for each image (target 667 
similarity - foil similarity). This difference score between target and foil similarity was then 668 
submitted to a mixed-effects logistic regression model as a predictor of temporal memory 669 
precision, where a significant positive relationship would indicate that the pattern similarity that 670 
predicted temporal memory precision was driven by image-specific representations. 671 

Statistical analyses 672 

Behavioral and fMRI data were analyzed using a combination of permutation tests, paired t tests, 673 
repeated-measures ANOVA and mixed-effects regression models. Trial-level relationships 674 
between similarity measures and final memory performance were tested with mixed-effects 675 
linear/logistic regression models (for recognition confidence and temporal memory precision, 676 
respectively). For all permutation analyses, we used 1,000 permutations and assessed 677 
significance by computing the proportion of values in the null distribution that were higher/lower 678 
than the observed values. All t tests were two-tailed. For mixed-effects regression models, we 679 
used the participant as a random effect and other variables as fixed effects. A threshold of p < 680 
0.05 was used to establish statistical significance for all analyses. fMRI analyses were corrected 681 
for multiple comparisons with Bonferroni corrections when applicable. Only ROIs that survived 682 
correction are reported except where otherwise noted. 683 
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SUPPLEMENTARY FIGURES 685 

 686 

Supplementary Figure 1. Subjective estimates of image frequency in the final memory phase. 687 
During the frequency test, participants were asked to indicate how many times they had seen each image 688 
(1, 2, 3, or 4 or more times). No participant preferentially chose the correct response (i.e., three times). 689 

  690 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2022.08.31.506090doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.506090
http://creativecommons.org/licenses/by-nc-nd/4.0/


 691 

Supplementary Figure 2. Raw estimated and actual temporal positions for each participant. Each 692 
dot indicates a temporal memory judgment. Temporal judgments for each participant were divided into 693 
‘high temporal precision’ and ‘low temporal precision’ on the basis of temporal memory error (median 694 
split). Histograms on sides indicate distributions of raw estimated (vertical) and actual (horizontal) 695 
temporal positions (overlaid across high- and low- temporal precision). Colors denote temporal memory 696 
precision (blue: high temporal precision; gray: low temporal precision). 697 

  698 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2022.08.31.506090doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.506090
http://creativecommons.org/licenses/by-nc-nd/4.0/


 699 

Supplementary Figure 3. Lag effects on behavioral measures of final memory. (a) Lag effects on 700 
recognition confidence. There were spacing effects in recognition confidence such that confidence 701 
increased as a function of increasing temporal lags between exposures (lag 1: 𝛽 = 0.051, p < 0.001; lag 2: 702 
𝛽 = 0.039, p < 0.001; in a mixed-effects linear regression model with recognition confidence as 703 
dependent variable and with each temporal lag as a separate predictor), and a forgetting effect wherein 704 
recognition confidence diminished as the lag between the last exposure and the final memory test 705 
increased (lag 3: 𝛽 = -0.303, p < 0.001). (b) Lag effects on temporal memory precision. There was a 706 
recency effect across months with temporal memory precision increasing the later in the experiment an 707 
image was first encountered (lag 0: 𝛽 = 0.098, p = 0.021; in a mixed-effects logistic regression model 708 
with temporal memory precision as dependent variable and with each temporal lag as a separate 709 
predictor). Error bars reflect mean ± s.e.m.; ~p < 0.10; *p < 0.05; ***p < 0.001. 710 
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Cortical ROIs (HCP-MMP1 atlas) z-value p-value (uncorrected) 

L Frontal Eye Fields 2.027 0.043 

L Supplementary and Cingulate Eye Field 2.693 0.007 

L Area 6m anterior 2.761 0.006 

L Area IFJp 2.356 0.018 

L Area IFSp 2.043 0.041 

L Area posterior 9-46v 2.020 0.043 

L Entorhinal Cortex 2.001 0.045 

L Perirhinal Ectorhinal Cortex 2.912 0.004 

L Area 31pd -2.011 0.044 

R Area 31p ventral -2.369 0.018 

R Frontal Opercular Area 1 -2.062 0.039 

R Entorhinal Cortex 2.082 0.037 

R Area TG dorsal 2.109 0.035 

R AreaTemporoParietoOcci pital Junction 1 2.119 0.034 

R Area 31a -1.963 0.050 

Supplementary Table 1. Whole-brain representational similarity analysis in cortical ROIs. A 712 
mixed-effects logistic regression predicting temporal memory with pattern similarity as the main fixed 713 
effect of interest was conducted for each parcel of the HCP-MMP1 atlas61 to determine whether cortical 714 
regions outside of the MTL also exhibit pattern similarity effects on temporal memory. This table 715 
summarizes the whole-brain parcel level analysis with cortical ROIs showing significant relationships 716 
between pattern similarity and temporal memory before correcting for multiple comparisons 717 
(p(uncorrected) < 0.05). No regions survived correction for multiple comparisons. 718 
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