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ABSTRACT: 14	
 15	
Remapping refers to a decorrelation of hippocampal representations of similar spatial environments. While 16	
it has been speculated that remapping may contribute to the resolution of episodic memory interference in 17	
humans, direct evidence is surprisingly limited. Here, we tested this idea using high-resolution, pattern-18	
based fMRI analyses. We show that activity patterns in human CA3/dentate gyrus exhibit an abrupt, 19	
temporally-specific decorrelation of highly similar memory representations that is precisely coupled with 20	
behavioral expressions of successful learning. Strikingly, the magnitude of this learning-related 21	
decorrelation was predicted by the amount of pattern overlap during initial stages of learning, with greater 22	
initial overlap leading to stronger decorrelation. Finally, we show that remapped activity patterns carry 23	
relatively more information about learned episodic associations compared to competing associations, 24	
further validating the learning-related significance of remapping. Collectively, these findings establish a 25	
critical link between hippocampal remapping and episodic memory interference and provide novel insight 26	
into why remapping occurs.  27	
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INTRODUCTION: 28	
 29	
The hippocampus is critical for forming long-term, episodic memories1–3. However, one of the fundamental 30	
challenges that the hippocampus faces is that many experiences are similar, creating the potential for 31	
memory interference4,5. In rodents, it is well established that minor alterations to the environment can trigger 32	
sudden changes in hippocampal activity patterns—a phenomenon termed remapping6,7. An appealing 33	
possibility is that hippocampal remapping also occurs in human episodic memory, allowing for similar 34	
memories to be encoded in distinct activity patterns that prevent interference8. At present, however, there 35	
remains an important gap between evidence of place cell remapping in the rodent hippocampus and 36	
episodic memory interference in humans. To bridge this gap, it is informative to consider how properties of 37	
place cell remapping, as demonstrated in the rodent hippocampus, might translate to episodic memory 38	
interference in humans.  39	
 40	
One of the most important properties of remapping in the rodent hippocampus is that it is characterized by 41	
abrupt transitions between representations9–12. These abrupt transitions, evidenced by decorrelations in 42	
patterns of neural activity, have most typically been observed as a function of the degree of environmental 43	
change9,11. However, abrupt remapping can also occur as a function of experience with a new 44	
environment10,12. Evidence of experience-dependent remapping6,13 suggests an important point: that 45	
remapping fundamentally reflects changes in internal representations, as opposed to changes in 46	
environmental states14,15. An emphasis on internal representations lends itself well to human episodic 47	
memory in that it suggests that hippocampal remapping should occur as memories change. More 48	
specifically, this perspective makes the critical prediction that when two events are highly similar, 49	
hippocampal remapping will occur if, and when, corresponding memories become distinct. Testing this 50	
prediction requires repeatedly probing internal representations (memories) as well as hippocampal 51	
representations. However, standard approaches of averaging neuroimaging data across memories and 52	
participants can easily obscure or wash out abrupt changes in hippocampal representations if the timing of 53	
those changes varies across memories or participants. 54	
 55	
Evidence of place cell remapping in rodents also motivates specific predictions regarding the relative 56	
contributions of hippocampal subfields, with a major distinction being between CA3/dentate gyrus and 57	
CA18,16,17. In general, CA3 and dentate gyrus are thought to be more important than CA1 for discriminating 58	
between similar stimuli15,17–20 and remapping has been shown to occur more abruptly in CA3 than in 59	
CA110,12,21. Human fMRI studies also support this general distinction, with several studies specifically 60	
implicating CA3 and dentate gyrus in discriminating similar memories22–27. However, these studies have not 61	
directly established a link between temporally abrupt changes in CA3/dentate gyrus activity and changes 62	
in episodic memory states.  63	
 64	
Here, we tested whether the resolution of interference between highly similar episodic memories is 65	
associated with an abrupt remapping of activity patterns in human CA3/dentate gyrus. We used an 66	
associative memory paradigm in which participants learned and were repeatedly tested on associations 67	
between scene images and object images28. The critical design feature was that the set of scene images 68	
included pairs of extremely similar scenes (Fig. 1a). These scene pairmates were intended to elicit 69	
associative memory interference. Across six rounds of learning, we tracked improvement in associative 70	
memory for each set of pairmates while also continuously tracking representational changes indexed by 71	
fMRI. Specifically, after each associative memory test round, participants were shown each scene image 72	
one at a time (exposure phase) which allowed us to measure the activity pattern evoked by each scene 73	
and, critically, the representational distance between scene pairmates. To preview, we find that behavioral 74	
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expressions of memory interference resolution are temporally-coupled to abrupt, stimulus-specific 75	
remapping of human CA3/dentate gyrus activity patterns. This remapping specifically exaggerated the 76	
representational distance between similar memories. In additional analyses, we show that the magnitude 77	
of remapping that individual memories experienced was predicted by the degree of initial pattern overlap 78	
among CA3/dentate gyrus representations and that remapped CA3/dentate gyrus representations carried 79	
increased and highly specific information about learned episodic associations.  80	
 81	
RESULTS: 82	
 83	
Participants completed six rounds of the experimental paradigm while inside an fMRI scanner. Each round 84	
included a study phase, an associative memory test phase, and a scene exposure phase (Fig. 1b). fMRI 85	
scanning was only conducted during the exposure phases. During the study phases, participants viewed 86	
scene-object associations one at a time. During the associative memory test phases, participants were 87	
shown scenes, one at a time, along with two very similar object choices (e.g., two guitars); one object was 88	
the target (i.e., the object that had been paired with the current scene) and the other object was the 89	
competitor (i.e., the object that had been paired with the scene pairmate). After selecting an object, 90	
participants indicated their confidence (high or low). During exposure phases, participants were shown each 91	
scene, along with novel scenes, and made a simple old/new judgment (mean ± 95% CI: d' = 5.40 ± 0.88; 92	
one-sample t-test vs. 0: t30 = 12.58, p < 0.001, Cohen’s d = 2.26). 93	
 94	
Behavior. 95	
 96	
During the associative memory test phases, participants chose the correct object with above-chance 97	
accuracy in each of the 6 rounds (t30’s ≥ 2.65, p’s ≤ 0.013, d's ≥ 0.48; chance accuracy = 50%). Accuracy 98	
markedly improved across rounds, from a mean of 56.45% ± 4.98% in round 1 to a mean of 94.71% ± 2.21% 99	
in round 6 (main effect of round: F1,30 = 318.86, p < 0.001, η2 = 0.91). The rate of choosing the correct 100	
object with high-confidence also robustly increased across rounds, from a mean of 27.15% ± 4.71% in 101	
round 1 to 92.83% ± 3.58% in round 6 (main effect of round: F1,30 = 574.44, p < 0.001, η2 = 0.95; Fig. 1c).  102	
 103	
To test whether hippocampal remapping was temporally coupled with the resolution of memory interference, 104	
we identified, for each participant and for each set of pairmates, the learning round in which scene-object 105	
associations were recalled with high confidence (for both scenes in a pairmate). We refer to this timepoint 106	
as the ‘learned round’ (LR; see Methods). Of critical interest for our remapping analyses was the correlation 107	
of activity patterns evoked by scene images during the learned round (LR) with activity patterns evoked 108	
immediately prior to the learned round (LR-1). We refer to this transition (from pre-learned to learned) as 109	
the ‘inflection point’ (IP) in learning (Fig. 1d). For example, if the LR for a particular set of pairmates was 110	
round 4, then the IP was the transition from round 3 to 4. Our rationale for correlating activity patterns from 111	
LR-1 with LR was that this correlation would capture the critical change in hippocampal representations 112	
(remapping) that putatively supports learning. 113	
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Figure 1. Experimental Design and Behavior. a. Participants learned 36 scene-object associations. The 36 scenes 
comprised 18 scene pairmates which consisted of highly similar image pairs (e.g., ‘barn 1’ and ‘barn 2’). Scene 
pairmates were also associated with similar objects (e.g., ‘guitar 1’ and ‘guitar 2’). b. Participants completed 6 rounds 
of study, test, and exposure phases. During study, participants viewed scenes and associated objects. During test, 
participants were presented with scenes and had to select the associated object from a set of two choices, followed by 
a confidence rating (high or low confidence; not shown). During exposure, scenes (rounds 1-6) or objects (round 1 and 
6) were presented and participants made an old/new judgment. fMRI data were only collected during the scene and 
object exposure phases. c. Mean percentage of high confidence correct responses for each test round. d. Data from a 
representative participant showing the ‘inflection point’ in learning, for each pairmate. The inflection point was defined 
as the point at which participants transitioned to high-confidence correct retrieval for both scenes within a pairmate—a 
transition from ‘pre-learned’ to ‘learned.’ e. The number of pairs that transitioned to a learned state at each round, 
aggregated across all participants and pairmates. N.L. indicates pairmates that were never learned. Notes: error bars 
reflect S.E.M. 
 
 
 
Remapping in CA3/dentate gyrus is time-locked to the inflection point in learning. 114	
 115	
For our fMRI analyses, our primary focus was on pattern similarity between scene pairmates. Pattern 116	
similarity was measured by correlating patterns of fMRI activity evoked by each scene during the scene 117	
exposure phases. Pairmate similarity was defined as the correlation between activity patterns evoked by 118	
scene pairmates (e.g., ‘barn 1’ and ‘barn 2’; Fig. 2b). Correlations between scenes that were not pairmates 119	
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(e.g., ‘barn 1’ and ‘airplane 2’; Fig. 2b) provided an important baseline measure of non-pairmate similarity. 120	
We refer to the difference between these two measures (pairmate – non-pairmate similarity) as the pairmate 121	
similarity score28. A positive pairmate similarity score would indicate that visually similar scenes (e.g., two 122	
barns) are associated with more similar neural representations than two unrelated scenes. Critically, 123	
because pairmate similarity scores are a relative measure, they can be directly compared across different 124	
brain regions29—something that would be inadvisable with raw correlation values. For all pattern similarity 125	
analyses, correlations were always performed across learning rounds (e.g., correlating ‘barn 1’ at LR-1 with 126	
‘barn 2’ at LR). This ensured independence of fMRI data30, but was also intended to capture transitions in 127	
hippocampal representations (remapping). 128	
 129	
Following a prior study that used similar stimuli and analyses28, fMRI analyses targeted the following regions 130	
of interest (ROIs): hippocampus, parahippocampal place area (PPA), and early visual cortex (EVC). PPA 131	
and EVC served as important control regions indexing high-level (PPA) and low-level (EVC) visual 132	
representations. We did not anticipate that these regions would demonstrate learning-related remapping. 133	
Within the hippocampus, we leveraged our high-resolution fMRI protocol to segment the hippocampus body 134	
into subfields comprising CA1 and CA2/CA3/dentate gyrus (CA23DG). Motivated by past empirical 135	
findings23,31 and theoretical models8, we predicted that remapping would occur in CA23DG. More 136	
specifically, we predicted that CA23DG remapping would occur at the inflection point (IP) in learning. To 137	
test this prediction, we compared pairmate similarity scores at the IP to pairmate similarity scores at a 138	
timepoint just prior to the IP (pre-IP). Whereas pairmate similarity scores at the IP were based on 139	
correlations between activity patterns from the Learned Round (LR) and the preceding round (LR-1), 140	
pairmate similarity scores at the pre-IP were based on correlations shifted back one step in time: i.e., 141	
between LR-1 and LR-2. Thus, whereas the IP captured the transition from pre-learned to learned, the pre-142	
IP was an important reference point that corresponded to a ‘non-transition’ (pre-learned to pre-learned). 143	
 144	
An ANOVA with factors of behavioral state (pre-IP, IP) and ROI (CA1, CA23DG, PPA, EVC) revealed a 145	
significant main effect of ROI (F3,90 = 4.08, p = 0.009, η2 = 0.04), reflecting overall differences in pairmate 146	
similarity scores across ROIs. Scores were numerically lowest in CA23DG and numerically highest in EVC. 147	
There was no main effect of behavioral state (F1,30 = 2.71, p = 0.110, η2 = 0.01), indicating that learning did 148	
not have a global effect on representational structure across ROIs. Critically, however, the interaction 149	
between behavioral state and ROI was significant (F3,90 = 2.95, p = 0.037, η2 = 0.04), indicating that learning 150	
differentially influenced pairmate similarity scores across ROIs. 151	
 152	
Within CA23DG, pairmate similarity scores were significantly lower at the IP than the pre-IP (t30 = -2.24, p 153	
= 0.033, d = 0.40, CI = [-0.012 ± 0.011]), consistent with our prediction that remapping would specifically 154	
occur at the behavioral inflection point. Importantly, we also confirmed via permutation test (see Methods) 155	
that CA23DG pairmate similarity scores at the IP were lower than would be expected if the mapping 156	
between pairmates and IP’s was shuffled within participants (p = 0.013, one-tailed; Fig. 2d). 157	
 158	
Strikingly, CA23DG pairmate similarity scores not only decreased at the IP, but they were significantly below 159	
0 at the IP (t30 = -2.36, p = 0.025, d = 0.19, CI = [-0.008 ± 0.007]). In other words, pairs of scenes with 160	
extremely high visual similarity were represented as less similar than completely unrelated scenes in 161	
CA23DG. While seemingly counterintuitive, several recent fMRI studies have also found that, in certain 162	
situations, hippocampal pattern similarity is lower for similar than dissimilar events23,28,32. This has led to 163	
the proposal that similarity triggers a repulsion of hippocampal representations. That is, just as physical 164	
proximity triggers repulsion of like magnetic poles, representational proximity triggers repulsion of similar 165	
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memories (Fig. 2f). The present results, however, provide critical new evidence that this repulsion is time-166	
locked to—and may, in fact, underlie—the resolution of interference between competing memories. 167	
 168	
In CA1, pairmate similarity scores did not significantly differ by learning state (t30 = -0.72, p = 0.474, d = 169	
0.13, CI = [0.004 ± 0.01]) or differ from 0 either at the pre-IP (t30 = -0.63, p = 0.531, d = 0.11, CI = [0.003 ± 170	
0.009]) or IP (t30 = -0.34, p = 0.735, d = 0.06, CI = [-0.001 ± 0.006]). In PPA, pairmate similarity scores 171	
decreased from pre-IP to IP (t30 = -2.28, p = 0.030, d = 0.41, CI = [0.008 ± 0.007]), with scores significantly 172	
greater than 0 in the pre-IP (t30 = 3.14, p = 0.004, d = 0.56, CI = [0.007 ± 0.005]) but not different from 0 at 173	
the IP (t30 = -0.26, p = 0.798, d = 0.05, CI = [-0.0006 ± 0.005]). In EVC, pairmate similarity scores did not 174	
significantly vary by learning state (t30 = -1.39, p = 0.175, d = 0.25, CI = [-0.007 ± 0.01]); but there was a 175	
numerical increase from pre-IP to IP, with scores significantly above 0 at IP (t30 = 3.13, p = 0.004, d = 0.56, 176	
CI = [0.01 ± 0.007]) but not at pre-IP (t30 = 0.92, p = 0.366, d = 0.16, CI = [0.004 ± 0.008]). 177	
 178	
The qualitative difference between CA23DG and EVC is striking in that, at the inflection point, these regions 179	
exhibited fully opposite representational structures: scene pairmates were more similar than non-pairmates 180	
in EVC, but less similar than non-pairmates in CA23DG. This finding parallels prior evidence of opposite 181	
representational structures in hippocampus and EVC28,32 and argues against the possibility that CA23DG 182	
‘inherited’ representational structure from early visual regions. More generally, it is striking that differences 183	
in pairmate similarity scores markedly varied across the four ROIs at the IP (F3,90 = 8.73, p < 0.001, η2 = 184	
0.14), but not at the pre-IP (F3,90 = 0.33, p = 0.804, η2 = 0.008), underscoring the influence of learning on 185	
representational structure. 186	
 187	
For the preceding fMRI analyses, the IP was defined as the correlation between the learned round (LR) 188	
and the immediately preceding round (LR-1). To more fully characterize how the representational state at 189	
the LR compared to other rounds, we additionally correlated representations at LR to representations at 190	
LR-2 and LR-3 (i.e., other rounds that preceded the LR) and also correlated LR with LR+1, LR+2, and LR+3 191	
(rounds that followed the LR) (Fig. 2e). Within CA23DG, pairmate similarity scores were significantly lower 192	
when correlating the LR with rounds that preceded learning compared to rounds that followed learning (t30 193	
= -2.98, p = 0.006, d = 0.54, CI = [-0.009 ± 0.006]). This striking asymmetry indicates that CA23DG 194	
representations expressed at the LR were systematically biased away from the initial representational 195	
position of competing memories. More generally, these data support the idea of an abrupt representational 196	
change (remapping) in CA23DG that was time-locked to the specific round at which learning occurred for 197	
individual pairmates. For CA1, PPA, and EVC, there were no significant differences in pairmate similarity 198	
scores when correlating the LR to rounds that preceded learning vs. followed learning (|t30| ≤ 0.79, p’s ≥ 199	
0.435, d ≤ 0.14; Fig. 2e). 200	
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Figure 2. Pairmate similarity scores change at the behavioral inflection point. a. Regions of interest included 
CA23DG and CA1 in the hippocampus, the parahippocampal place area (PPA), and early visual cortex (EVC). b. 
Correlation matrix illustrating how pairmate similarity scores were computed for the behavioral inflection point. c. 
Pairmate similarity scores at the behavioral inflection point (IP) and just prior to the inflection point (pre-IP) across 
different regions of interest (ROIs). Pairmate similarity scores significantly varied by ROI (p = 0.009) and there was a 
significant interaction between ROIs and behavioral state (p = 0.011). d. A permutation test (1,000 iterations) was 
performed by shuffling, within participants, the mapping between the behavioral inflection point and scene pairmates. 
In CA23DG the actual mean group-level pairmate similarity score at the IP was lower than 98.70% of the permuted 
mean similarity scores. e. Pairmate similarity scores calculated by correlating the learned round (LR) with each of the 
three preceding rounds (– distance to LR) and each of the three succeeding rounds (+ distance to LR). In CA23DG, 
pairmate similarity scores were significantly lower when the LR was correlated with preceding round compared to 
succeeding rounds (p = 0.006). The difference was not significant for any other ROIs (p’s ≥ 0.435). f. Conceptual 
illustration of a decrease in pairmate similarity scores from pre-IP to IP. In the pre-IP state (top panel), A1 and A2 are 
nearby in representational space. In the IP state (bottom panel), the representational distance between A1 and A2 has 
been exaggerated. When pairmates (e.g., A1 and A2) are farther apart in representational space than non-pairmates 
(e.g., A1 and B2) the pairmate similarity score will be negative (i.e., pairmate similarity < non-pairmate similarity), 
consistent with a repulsion of competing representations. Notes: * p < .05, ** p < .01, error bars reflect S.E.M. 
 
 
 
Overlap of CA23DG representations triggers remapping. 201	
 202	
The fact that pairmate similarity scores in CA23DG were negative at the IP (Fig. 2c) suggests that learning-203	
related remapping involved an active repulsion of competing hippocampal representations (Fig. 2f). 204	
Conceptually, the key feature of a repulsion account is that separation of hippocampal representations is a 205	
reaction to initial overlap among memories33. Here, because we measured representational states 206	
throughout the course of learning, we were able to test this hypothesis directly. Specifically, we tested the 207	
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prediction that relatively greater pairmate similarity scores (i.e., higher overlap between memories) at a 208	
given timepoint is associated with relatively lower pairmate similarity scores (i.e., lower overlap between 209	
memories) at a successive timepoint. 210	
 211	
To test this hypothesis, we first translated the 6 learning rounds into 5 ‘timepoints’ (see Methods). Each 212	
timepoint corresponded to the set of scene pair similarity scores obtained by correlating activity patterns 213	
across consecutive learning rounds [e.g., timepoint 1 = r(round 1, round 2)]. These scores reflected the 214	
representational structure at each timepoint (i.e., which pairmates were relatively similar, which pairmates 215	
were relatively dissimilar). We then rank correlated the pairmate similarity scores across successive 216	
timepoints [r(timepoint 1, timepoint 2)]. Whereas a positive rank correlation would indicate that 217	
representational structure is preserved across time points, a negative rank correlation would indicate that 218	
representational structure is inverted across time points. Critically, an inversion of representational structure 219	
is precisely what would be predicted if initial overlap among activity patterns (i.e., high pairmate similarity 220	
scores) triggers a repulsion of activity patterns (i.e., low pairmate similarity scores).  221	
 222	
Strikingly, the rank correlation in CA23DG was significantly negative (t30 = -2.99, p = 0.006, d = 0.54, CI = 223	
[-0.06 ± 0.04]). In contrast, the rank correlation in CA1 was significantly positive (t30 = 2.11, p = 0.043, d = 224	
0.38, CI = [0.06 ± 0.05]). The difference between CA23DG and CA1 was also significant (t30 = 3.73, p < 225	
0.001, d = 0.67, CI = [0.12 ± 0.06]). Importantly, the negative correlation in CA23DG cannot be explained 226	
by regression to the mean (see Methods). Moreover, when we tested correlations at a lag of 2 [r(timepoint 227	
N, timepoint N+2)], correlations did not significantly differ from 0 for either CA23DG (t30 = -0.71, p = 0.485, 228	
d = 0.13, CI = [-0.02 ± 0.05]) or CA1(t30 = -1.60, p = 0.120, d = 0.29, CI = [-0.04 ± 0.05]). Further, the 229	
interaction between lag (1, 2) and ROI (CA23DG, CA1) was also significant (F1,30 = 7.09, p = 0.012, η2 = 230	
0.06), indicating that the dissociation between CA23DG and CA1 was relatively stronger at lag 1 231	
(consecutive timepoints) than lag 2 (non-consecutive timepoints). Thus, representational structure at a 232	
given time point specifically predicted representational structure at a successive timepoint. Rank 233	
correlations did not differ from 0 in either PPA or EVC, either for lag 1 or lag 2 (|t30|’s ≤ 1.12, p’s ≥ 0.272, 234	
d's ≤ 0.20). 235	
 236	
While the negative correlation in CA23DG was fully consistent with our prediction—and with the idea that 237	
high pattern overlap triggers repulsion—the negative correlation could alternatively be explained by 238	
pairmates with relatively low pairmate similarity at timepoint N tending to have relatively high similarity at 239	
timepoint N+1. Additionally, because our analysis was entirely agnostic to behavioral data, it does not 240	
specifically establish that the negative pairmate similarity scores that we observed at the behavioral IP (Fig. 241	
2c and 2e) were triggered by pattern overlap at IP-1. Thus, as a complementary analysis, we binned all 242	
pairmates, by quartiles, according to pairmate similarity scores at IP-1, with the 4th quartile representing 243	
pairmates with the highest pairmate similarity scores. We then computed the mean pairmate similarity 244	
scores for those bins at the IP. Again, this analysis was separately performed for CA23DG and CA1. An 245	
ANOVA with factors of ROI (CA23DG, CA1) and pairmate similarity scores at IP-1 (4 quartiles) revealed a 246	
significant interaction (F3,90 = 3.19, p = 0.027, η2 = 0.03). Critically, this interaction was driven by a marked 247	
difference between CA23DG and CA1 when considering the bin with the highest overlap at IP-1 (i.e., 4th 248	
quartile: t30 = -2.87, p = 0.008, d = 0.51, CI = [-0.03 ± 0.02], Fig. 3c). For CA23DG, pairmate similarity 249	
scores at the IP were significantly below 0 and numerically lowest for pairmates whose similarity scores at 250	
IP-1 were in the 4th quartile (comparison to 0: t30 = -2.54, p = 0.017, d = 0.46, CI = [-0.023 ± 0.019]); the 251	
pattern in CA1 was qualitatively opposite. Collectively, these results provide novel, theory-consistent 252	
evidence that remapping of competing representations is actively triggered by initial representational 253	
overlap. 254	
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Figure 3. Representational structure across timepoints. a. Schematic illustration showing the rank order of scene 
pairmates based on pairmate similarity scores at various time points (N, N+1, N+2). If scene pairmates with relatively 
high pairmate similarity scores at a given timepoint are systematically associated with relatively low pairmate similarity 
scores at a succeeding time point (red arrows), this will produce a negative rank correlation. b. Mean rank order 
correlations of pairmate similarity scores across timepoints for CA23DG and CA1. Lag 1 correlations reflect correlations 
between a given timepoint and an immediate succeeding timepoint (e.g., timepoints 2 and 3). Lag 2 correlations reflect 
correlations between a given timepoint and a timepoint two steps away (e.g., timepoints 2 and 4). At lag 1, there was 
a negative correlation in CA23DG (p = 0.004), but a positive correlation in CA1 (p = 0.045). At lag2, correlations were 
not significant in either CA23DG or CA1 indicating that correlations in representational structure were specific to 
temporally adjacent rounds. c. Pairmate similarity scores at the inflection point (IP) as a function of relative pairmate 
similarity scores in the pre-IP state (1st quartile = lowest similarity, 4th quartile = highest similarity). Pairmate similarity 
scores in CA23DG were significantly lower than CA1 (p = 0.017) and significantly below 0 (p = 0.008) for pairmates 
with the highest pre-IP similarity (4th quartile). Notes: * p < .05, ** p < .01, error bars reflect S.E.M. 
 
 
 
CA23DG scene representations differentiate between competing object associations. 255	
 256	
Thus far, we have focused on similarity among neural representations evoked while viewing the scene 257	
images (scene exposure phase). However, our paradigm also included two fMRI runs during which 258	
participants viewed each of the objects associated with the scene images (object exposure phase; see 259	
Methods). This allowed us to test whether hippocampal activity patterns evoked while viewing the scenes 260	
resembled—or came to resemble—activity patterns evoked while viewing corresponding object images. 261	
 262	
Whereas, pairmate similarity scores were computed by correlating activity patterns across rounds of the 263	
scene exposure phase (e.g., LR-1 and LR), here we computed correlations between a single round of the 264	
scene exposure phase (e.g., LR) and the average of the two object rounds (see Methods). For this analysis, 265	
there were three important factors that we considered. First, we considered whether scene representations 266	
were in a ‘pre-learned’ state (LR-1) or ‘learned’ state (LR). Second, we separately tested correlations 267	
between each scene and (a) the target object (e.g., ‘guitar 1’) vs. (b) the competing object (e.g., ‘guitar 2’) 268	
(Fig. 4a). Third, we again compared results in CA23DG vs. CA1. 269	
 270	
A repeated measures ANOVA with factors of ROI (CA23DG, CA1), behavioral state (pre-learned, learned), 271	
and object relevance (target, competitor) revealed a significant interaction between behavioral state and 272	
object relevance (F1,30 = 12.42, p = 0.001, η2 = 0.02). Qualitatively, this interaction reflected a learning-273	
related change wherein hippocampal representations of scene images became relatively more similar to 274	
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target objects and less similar to competitor objects. However, this 2-way interaction between behavioral 275	
state and object relevance was qualified by a trend toward a 3-way interaction between behavioral state, 276	
object relevance, and ROI (F1,30 = 4.07, p = 0.053, η2 = 0.01). Specifically, the interaction between 277	
behavioral state (pre-learned, learned) and object relevance (target, competitor) was significant in CA23DG 278	
(F1,30 = 11.98, p = 0.002, η2 = 0.06) but not in CA1 (F1,30 = 0.44, p = 0.510, η2 = 0.002) (Fig. 4b). For 279	
CA23DG, there was a qualitative increase, from the pre-learned to learned state, in similarity between 280	
scenes and target objects and a qualitative decrease, from the pre-learned to learned state, in similarity 281	
between scenes and competing objects. In other words, the remapping of CA23DG scene representations 282	
that occurred at the learned round yielded a relative strengthening of information related to target object 283	
associations and a relative weakening of information related to competing object associations. This 284	
dissociation in CA23DG is striking when considering that target and competitor objects were extremely 285	
similar (see Fig.1a, Fig. 4a) and even more so when considering that during the scene and object exposure 286	
phases participants were not instructed or required in any way to recall the corresponding images. The 2-287	
way interaction between behavioral state and object relevance was not significant for PPA or EVC [F1,30’s 288	
≤ 3.23, p’s ≥ 0.082, η2's ≤ 0.02]. 289	
 
 
 

 
Figure 4. Scene-object similarity as a function of behavioral state. a. Example associations between scene 
pairmates and objects. Scene-object similarity was calculated by correlating activity patterns evoked during the scene 
exposure phases (at different behavioral states) and the object exposure phases. Target similarity refers to correlations 
between a given scene and the object with which it was studied. Competitor similarity refers to correlations between a 
given scene and the object with which its pairmate was studied. b. Scene-object similarity as a function of object 
relevance (target, competitor), ROI (CA23DG, CA1), and behavioral state (pre-learned, learned). Correlations between 
unrelated scenes and objects (across pairmate similarity; not shown) was subtracted from target and competitor 
similarity values. For CA23DG, there was a significant interaction between behavioral state and object relevance (p = 
0.002). Notes: ** p < .01, error bars reflect S.E.M. 
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DISCUSSION: 290	
 291	
Here, we show that learning to discriminate competing episodic memories is associated with an abrupt 292	
remapping of activity patterns in CA3/dentate gyrus. Specifically, fMRI pattern similarity in CA3/dentate 293	
gyrus decreased precisely when behavioral expressions of learning emerged. Additionally, the degree to 294	
which remapping occurred in CA3/dentate gyrus was predicted by the degree of initial pattern overlap 295	
among competing memories. Finally, remapped CA3/dentate gyrus representations contained relatively 296	
stronger information about relevant episodic associations and relatively weaker information about 297	
competing episodic associations, confirming the learning-related significance of the remapping effect. 298	
 299	
Our findings complement recent demonstrations of remapping-like phenomena in the human 300	
hippocampus34,35 as well as evidence of abrupt remapping in the rodent hippocampus9–12. However, our 301	
findings provide unique and direct support for the proposal that hippocampal remapping is associated with 302	
the resolution of human episodic memory interference8. Specifically, we demonstrate an abrupt transition 303	
in hippocampal representations that occurred at an important inflection point in learning—the point at which 304	
participants were able to correctly discriminate similar memories and retrieve associations with high 305	
confidence. Notably, this finding was only possible because (a) we repeatedly probed episodic memory and 306	
hippocampal representations over the course of learning and (b) we identified inflection points in a 307	
participant- and pairmate-specific manner. Indeed, inflection points varied considerably across and within 308	
participants (Fig. 1d and Sup. table 1) and the observed hippocampal remapping effect was significantly 309	
weaker when the specific mapping between behavior and fMRI data was shuffled within participants (Fig. 310	
2d).  311	
 312	
The fact that CA23DG remapping occurred precisely at the inflection point in learning strongly suggests 313	
that remapping was related to learning. This argument is also reinforced by our independent finding that 314	
remapped CA23DG activity patterns, evoked while participants viewed individual scene images, carried 315	
more information (compared to the pre-learning state) about target versus competing object associations. 316	
In other words, the inflection point defined from behavioral expressions of associative memory also 317	
captured a critical change in associative representations encoded in CA23DG activity patterns. The fact 318	
that CA23DG exaggerated the representational distance between competing scenes (remapping) while 319	
simultaneously reflecting learned associations (scene-object similarity) is consistent with the idea that CA3 320	
balances both pattern separation and pattern completion mechanisms4,17,36,37. The fact that remapped 321	
activity patterns contained information about learned associations is also consistent with the argument that 322	
hippocampal remapping does not simply reflect changes in the external environment—which did not change 323	
over the course of the experiment—but instead fundamentally reflects changes in internal models of the 324	
environment14,15. 325	
 326	
One aspect of our findings which does not, to our knowledge, have a direct analog in rodent studies of 327	
remapping is the negative pairmate similarity score we observed at the inflection point in CA23DG. The 328	
negative score indicates that scene pairmates—which were extremely similar images—were associated 329	
with less overlapping CA23DG representations than completely unrelated scenes. In rodents, the most 330	
extreme version of remapping occurs when two similar environments are associated with fully independent 331	
place codes8. In our study, however, if each scene was associated with an independent representation, 332	
then the similarity between pairmates would be equal to, but not lower than, the similarity between non-333	
pairmates. Instead, the negative pairmate similarity score requires a dependence between competing 334	
hippocampal representations wherein a given memory representation systematically moves away from the 335	
representational position of a competing memory (Fig. 2f). We refer to this dependence as ‘repulsion’ in 336	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.430826doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430826
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

order to emphasize the oppositional influence that competing memories exerted. Several recent human 337	
fMRI studies have reported conceptually similar effects in the hippocampus28,32,38—and in CA3/dentate 338	
gyrus, specifically22–26. However, the current findings are the first to directly establish that the repulsion of 339	
competing hippocampal representations is temporally coupled to the resolution of memory interference. 340	
 341	
Based on computational models33,39,40, our prediction was that the repulsion effect in CA23DG was a direct 342	
consequence of initial overlap among activity patterns. Indeed, a recent study found that hippocampal 343	
repulsion was more likely to occur for behaviorally-confusable memories32, potentially because confusable 344	
memories are associated with greater pattern overlap during initial learning. In the current study, we 345	
tested—and confirmed—this account directly. Specifically, we found that the representational structure 346	
(relative pairmate similarity) in CA23DG at a given timepoint was negatively correlated with representational 347	
structure at an immediately following timepoint. This negative relationship is highly consistent with the idea 348	
that overlap, itself, triggers plasticity that ‘punishes’ those features which are shared across 349	
memories24,33,39,40. While our study does not afford inferences about the causal relationship between 350	
repulsion and learning, the idea that repulsion (or remapping more generally) is triggered by 351	
representational overlap, combined with the fact that remapping was associated with learning, is consistent 352	
with the possibility that repulsion of CA3/dentate gyrus representations is a causal factor in learning. 353	
 354	
Across multiple analyses, we observed dissociations between CA3/dentate gyrus and CA1. The fact that 355	
the remapping effects were selective to CA3/dentate gyrus is consistent with evidence from rodent studies 356	
of remapping and pattern separation8,16,36 and with several human fMRI studies22–25,36. Perhaps the most 357	
striking dissociation between CA23DG and CA1 comes from our analysis of representational structure 358	
across time points. Whereas CA23DG exhibited a negative rank correlation across successive timepoints, 359	
CA1 exhibited a positive rank correlation (Fig. 3b). Thus, in contrast to CA23DG, CA1 was characterized 360	
by stability (though only modest stability) of representational structure across timepoints4. This dissociation 361	
between CA23DG and CA1 is consistent with the idea that CA3, in particular, supports rapid plasticity that 362	
allows for changes in memory representations on short time scales41 and is also consistent with evidence 363	
of faster remapping in CA3/dentate gyrus than in CA110,12,21. It is also notable that the remapping effect we 364	
observed in CA23DG at the inflection point in learning strongly contrasted with the pattern of data in early 365	
visual cortex. Whereas CA23DG exhibited a negative pairmate similarity score at the inflection point, EVC 366	
exhibited a significant, positive pairmate similarity score at the inflection point. This finding makes the 367	
important point that CA23DG was not inheriting representational structure from early sensory regions (e.g., 368	
due to visual attention)—rather, CA23DG fully inverted the representational structure that was expressed 369	
in early visual cortex28. 370	
  371	
Taken together, our findings constitute novel evidence for a remapping of human CA3/dentate gyrus 372	
representations that is temporally-coupled to the resolution of episodic memory interference. These findings 373	
were motivated by—and complement—existing evidence of remapping in the rodent hippocampus. Yet, 374	
our findings also go beyond existing rodent or human studies by establishing a direct link between 375	
remapping and changes in internal memory states14,15. Additionally, our conclusion that overlap among 376	
CA3/dentate gyrus representations actively triggers a repulsion of memory representations has important 377	
implications for theoretical accounts of how the hippocampus resolves memory interference5,8,36,39 and will 378	
hopefully inspire targeted new analyses that test for similar mechanisms in rodent models.  379	
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METHODS: 471	
 472	
Participants.  473	
Thirty-six participants (21 female; mean age = 23.69 yrs, range = 18 – 34 yrs) were enrolled in the 474	
experiment following procedures approved by the University of Oregon Institutional Review Board. All 475	
participants were right-handed native-English speakers with normal or corrected-to-normal vision, with no 476	
self-reported psychiatric or neurological disease. One participant was excluded due to excess motion in the 477	
scanner (max FD > 3.5 mm); another 4 participants were excluded due to low behavioral performance (see 478	
Results for more details). The final analysis included 31 participants. All participants received monetary 479	
compensation for participating. 480	
 481	
Stimuli. 482	
Thirty-six images of scenes and 36 images of everyday objects were used in the experiment. The set of 36 483	
scenes and the set of 36 objects were each comprised of 18 ‘pairmates’ of visually and semantically similar 484	
images (Fig. 1a). An additional 36 scenes and 12 objects were used as lures for the scene and object 485	
exposure phases of the study, respectively. Separately for each participant, scene pairmates were 486	
randomly assigned to object pairmates (Fig. 1a). For example, if ‘barn 1’ was assigned to ‘guitar 1’, then 487	
‘barn 2’ would be assigned to ‘guitar 2.’ 488	
 489	
Experimental procedure. 490	
After providing consent and reviewing the instructions, participants entered the MRI scanner. Inside the 491	
scanner, participants completed 6 rounds of the experimental paradigm (Fig. 1b). The first round and the 492	
last round included 4 phases: study, test, scene exposure (scanned), and object exposure (scanned). 493	
Rounds 2–5 were the same, except they did not include the object exposure phase. Across all phases, 494	
stimuli were displayed on a grey background, projected from the back of the scanner. After exiting the 495	
scanner, participants completed a separate memory task that involved learning new scene-object 496	
associations (not reported here). The experiment was implemented in PsychoPy1 and lasted approximately 497	
3 hrs, with about 2 hrs 15 min inside the scanner. 498	
 499	
Study Phase.  During the study phases, participants learned 36 scene-object associations, one association 500	
at a time. Each trial began with the presentation of a scene image (1000 ms), followed by a white fixation 501	
cross (200 ms), the associated object image (1000 ms) and then another white fixation cross (1200 ms) 502	
until the start of the next trial. The order in which the 36 scene-object associations were studied was 503	
randomized for each round and for each participant.  504	
 505	
Test Phase.  During the test phases, participants attempted to retrieve the object associated with each of 506	
the 36 scenes. Each trial began with the presentation of a scene (1000 ms), followed by a white fixation 507	
cross (200 ms), and then the presentation of two object pairmates (e.g., ‘Guitar 1’ and ‘Guitar 2’). One of 508	
the object images was the ‘target’ (i.e., the object associated with the cued scene) and the other object 509	
image was the ‘competitor’ (i.e., the object associated with the cued scene’s pairmate). Participants had a 510	
maximum of 4000 ms to select the correct object image (target) via a button box in their right hand. If no 511	
response was made, the next trial began after a white fixation cross was displayed for 1200 ms. If a 512	
response was made, a confidence rating then appeared beneath the objects and participants had a 513	
maximum of 3000 ms to indicate whether their response was a “Guess” or “Sure.” After indicating their 514	
confidence (or after time ran out), a white fixation cross appeared (1200 ms) until the start of the next trial. 515	
The location of the correct object (left or right) and the order in which each of the 36 scene-object 516	
associations were tested were randomized for each round and for each participant.  517	
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 518	
Scene Exposure Phase.  During the scene exposure phases, which were conducted during fMRI scanning, 519	
participants saw 39 scene images in each of two blocks (78 scenes per round). Each block included the 36 520	
studied scenes and 3 novel lure scenes. Participants made an old/new judgment for each scene. Each trial 521	
began with the presentation of a scene image (500 ms), followed by a red fixation cross (1500 ms) which 522	
represented the response window. Participants again responded using the button box. After the red fixation 523	
cross, a white fixation cross (2000 ms) was presented until the start of the next trial. The order of the 39 524	
scene trials within each block was randomized for each block, round, and participant. Between the two 525	
blocks of 39 trials, participants performed a short odd/even judgment task (4 trials). Each odd/even trial 526	
consisted of a single-digit number displayed on the screen (500 ms), followed by a red fixation cross (1000 527	
ms) which represented the response window, and then a white fixation cross (1000 ms) until the start of the 528	
next trial.  529	
 530	
Object Exposure Phase.  The object exposure phase (conducted during fMRI scanning) was only included 531	
in the first and sixth rounds and followed an identical structure and procedure as the scene exposure phase. 532	
The only difference was that the 39 trials in each block corresponded to the 36 studied objects and 3 novel 533	
lure objects. 534	
 535	
MRI acquisition. 536	
All images were acquired on a Siemens 3T Skyra MRI system in the Lewis Center for Neuroimaging at the 537	
University of Oregon. Functional data were acquired with a T2*-weighted echo-planar imaging sequence 538	
with partial-brain coverage that prioritized full coverage of the hippocampus and early visual cortex 539	
(repetition time = 2000 ms, echo time = 36 ms, flip angle = 90°, 72 slices, 1.7x1.7x1.7mm voxels). A total 540	
of 8 functional scans were acquired. Each functional scan comprised 177 volumes and included 10 s of 541	
lead-in time and 10 s of lead-out time at the beginning and end of each scan, respectively. The 8 functional 542	
scans corresponded to 6 rounds of the scene exposure phase (scans 1 and 3–7) and 2 rounds of the object 543	
exposure phase (scans 2 and 8). Anatomical scans included a whole-brain high-resolution T1-weighted 544	
magnetization prepared rapid acquisition gradient echo anatomical volume (1x1x1mm voxels) and a high-545	
resolution (coronal direction) T2-weighted scan (0.43x0.43x2mm voxels) to facilitate segmentation of 546	
hippocampal subfields. 547	
 548	
Anatomical data preprocessing. 549	
Preprocessing was performed using fMRIPrep 1.5.02,3 (RRID:SCR_016216), which is based 550	
on Nipype 1.2.24,5 (RRID:SCR_002502). The T1-weighted (T1w) image was corrected for intensity non-551	
uniformity (INU) with N4BiasFieldCorrection6 (ANTs 2.2.07, RRID:SCR_004757), and used as the T1w-552	
reference throughout the workflow. The T1w-reference was skull-stripped with the 553	
antsBrainExtraction.sh workflow (ANTs) in Nipype, using OASIS30ANTs as target template. Brain tissue 554	
segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the 555	
brain-extracted T1w using fast8 (FSL 5.0.9, RRID:SCR_002823). Volume-based spatial normalization to 556	
one standard space (MNI152NLin2009cAsym) was performed through nonlinear registration 557	
with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w 558	
template. ICBM 152 Nonlinear Asymmetrical template version 2009c9 (RRID:SCR_008796; TemplateFlow 559	
ID: MNI152NLin2009cAsym) was used for spatial normalization. 560	
 561	
Functional data preprocessing. 562	
For each of the 8 BOLD scans per participant, the following preprocessing was performed. First, a reference 563	
volume and its skull-stripped version were generated using fMRIPrep. A deformation field to correct for 564	
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susceptibility distortions was estimated based on two echo-planar imaging (EPI) references with opposing 565	
phase-encoding directions, using 3dQwarp, AFNI10. Based on the estimated susceptibility distortion, an 566	
unwarped BOLD reference was calculated for a more accurate co-registration with the anatomical reference. 567	
The BOLD reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which 568	
implements boundary-based registration11. Co-registration was configured with six degrees of freedom. 569	
Head-motion parameters with respect to the BOLD reference (transformation matrices, and six 570	
corresponding rotation and translation parameters) were estimated before any spatiotemporal filtering 571	
using mcflirt FSL 5.0.912. BOLD scans were slice-time corrected using 3dTshift AFNI10(RRID:SCR_005927). 572	
The BOLD time-series (including slice-timing correction when applied) were resampled onto their original, 573	
native space by applying a single, composite transform to correct for head-motion and susceptibility 574	
distortions. Framewise displacement (FD) confounding time-series were calculated based on 575	
the resampled BOLD time-series for each functional scan13. 576	
 577	
fMRI first-level general linear model (GLM) analyses.  578	
After fMRIPrep preprocessing, the first 5 volumes (10 s) of each functional scan were discarded. Then, the 579	
brain mask generated by fMRIPrep from the T1 anatomical image was used to perform brain extraction for 580	
each of the 8 functional scans. Each functional scan was then median centered. For the 6 scans of the 581	
scene exposure phase and 2 scans of the object exposure phase, all first level GLMs were performed in 582	
participants’ native space with FSL using a Double-Gamma HRF with temporal derivatives, implemented 583	
with Nipype. GLMs were calculated using a variation of the Least Squares – Separate method14: a separate 584	
GLM was calculated for each of the 36 scenes (for scene exposure phases) or objects (for object exposure 585	
phases) across both repeats within a scan. For each GLM, there was one regressor of interest (representing 586	
a single scene or object image across its two repetitions per scan). All other trials (including lure images), 587	
framewise displacement, xyz translation and xyz rotation were represented with nuisance regressors. 588	
Additionally, a high pass filter (128 Hz) was applied for each GLM. This model resulted in 36 beta-maps 589	
per scan (one map per scene/object) which were converted to t-maps that represented the pattern of activity 590	
elicited by each scene/object for each scan.  591	
 592	
Regions of interest. 593	
A region of interest (ROI) for early visual cortex (EVC) was created from the probabilistic maps of Visual 594	
Topography15 in the MNI space with a 0.5 threshold. This ROI was transformed into each participant’s 595	
native space using inverse T1w-to-MNI non-linear transformation. For each participant, the top 300 EVC 596	
voxels were then selected by averaging the t-maps of all scenes and objects and then choosing the voxels 597	
with the highest t-statistics (i.e., the voxels most responsive to visual stimuli). An ROI for the 598	
parahippocampal place area (PPA) was created by first using an automated meta-analysis in Neurosynth 599	
with the key term “place”. Then, clusters were created using voxels with a z-score > 2 based on the 600	
Neurosynth associative tests. Since these clusters were generated through an automated meta-analysis 601	
and were not anatomically exclusive to PPA, we visually inspected the results and manually selected the 602	
two largest clusters that were spatially consistent with PPA. One cluster was in the right hemisphere (voxel 603	
size = 247) and one cluster was in the left hemisphere (voxel size = 163). These clusters were combined 604	
into a single PPA mask. This mask was then transformed into each participant's native space using the 605	
inverse T1w-to-MNI transformation. For each participant, a final PPA ROI was generated by averaging the 606	
t-maps of all scene exposure phase scans and then selecting the 300 voxels with the highest average t-607	
statistics (i.e., the most scene-responsive voxels). To create hippocampal ROIs, we used the Automatic 608	
Segmentation of Hippocampal Subfields (ASHS)16 toolbox with the upenn2017 atlas to generate subfield 609	
ROIs in each participant's hippocampal body, including CA23DG—the combination of CA2, CA3 and 610	
dentate gyrus—and CA1. The most anterior and posterior slices of the hippocampal body were manually 611	
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determined for each participant based on the T2-weighted anatomical structure. Each participant's subfield 612	
segmentations were also manually inspected to ensure accuracy of the segmentation protocol. Then, each 613	
subfield ROI was transformed into each participant’s native space using the T2-to-T1w transformation, 614	
calculated with FLIRT (fsl) with 6 degrees of freedom, implemented with Nipype. All ROIs were again 615	
visually inspected following the transformation to native space to ensure the ROIs were anatomically correct.  616	
 617	
fMRI pattern similarity analyses. 618	
Pairmate Similarity Scores.  Pattern similarity was calculated as the Fisher z-transformed Pearson 619	
correlation between t-maps within each ROI. All pattern similarity analyses were performed by correlating 620	
the t-maps for stimuli across scans (i.e., correlations were never performed within the same scan). For our 621	
primary analyses related to pattern similarity between scene images, of critical interest was mean similarity 622	
between pairmate scenes (pairmate similarity) relative to mean similarity between non-pairmate scenes 623	
(non-pairmate similarity). For example, the correlation between the t-maps for ‘barn 1’ from scan 3 and 624	
‘barn 2’ from scan 4 would reflect pairmate similarity, whereas the correlation between the t-maps for ‘barn 625	
1’ from scan 3 and ‘airplane 2’ from scan 4 would reflect non-pairmate similarity. We then calculated the 626	
mean difference between pairmate similarity and non-pairmate similarity, which we refer to as the pairmate 627	
similarity score.   628	
 629	
Learned Round.  To relate pairmate similarity scores to behavioral measures of learning, we identified the 630	
Learned Round (LR) for each pairmate, separately for each participant. The LR was based on performance 631	
in the associative memory test. Specifically, the LR was defined as the first round in which the target object 632	
was selected with high confidence for both scenes in a pairmate, with the additional requirement that 633	
performance remained stable in all subsequent rounds. It was therefore possible that both scenes in a 634	
pairmate were associated with high confidence correct responses in round N, not in round N+1, and then 635	
(again) in round N+2 and thereafter; in this case, the LR would be round N+2. 636	
 637	
Inflection Point.  The inflection point (IP) was defined as the transition from LR – 1 to LR (i.e., the transition 638	
from ‘pre-learned’ to ‘learned’). Thus, pattern similarity analyses of the IP refer to the correlation of t-maps 639	
from LR-1 to t-maps from LR. We hypothesized that the behavioral state change from LR-1 to LR would 640	
correspond to a reduction in pattern similarity between pairmates. Pattern similarity analyses at the IP were 641	
contrasted against the ‘pre-IP’ state, which was based on the correlation of t-maps from LR-2 and LR-1 642	
(i.e., a non-transition from ‘not learned’ to ‘not learned’) (Fig. 2c). Pairmates for which participants never 643	
reached and sustained high-confidence correct responses (mean ± s.d., 1.81 ± 2.27 per participant) and 644	
pairmates that were learned in the 1st round (LR = 1; mean ± s.d., 1.00 ± 1.26) were excluded from the IP 645	
analysis because neither the pre-IP nor IP states could be measured. For pairmates that were learned in 646	
the 2nd round (LR = 2; mean ± s.d., 3.23 ± 2.80), pattern similarity at the IP was calculated and included in 647	
the analyses, but pattern similarity at the pre-IP state could not be calculated because an LR – 2 did not 648	
exist. For rest of the pairmates (LR = 3, 4, 5, or 6), we calculated pattern similarity for both pre-IP and IP 649	
(Fig. 1e). Similar restrictions applied to correlations between LR and LR-3, LR + 1, LR + 2, and LR + 3 (Fig. 650	
2e). The number of pairmates included in each comparison and for each participant are reported in 651	
Supplementary Table 1.   652	
 653	
Representational Structure Across Time Points.  To test whether representational overlap triggered 654	
remapping (related to Fig. 3), the 6 learning rounds were translated into 5 timepoints. Each timepoint 655	
corresponded to a pair of consecutive learning rounds ([1,2], [2,3], [3,4], [4,5], [5,6]). For each timepoint, 656	
pairmate similarity scores were calculated, as described above, by correlating activity patterns from 657	
consecutive learning rounds (e.g., pairmate similarity scores at timepoint 1 were based on correlations 658	
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between round 1 and round 2). This yielded a set of pairmate similarity scores at each of the 5 timepoints. 659	
These sets of similarity scores reflected the representational structure at each timepoint (i.e., which 660	
pairmates were relatively similar and which pairmates were relatively dissimilar). Pairmate similarity scores 661	
were then correlated across timepoints using Spearman’s rank correlation (Fisher z transformed). Lag 1 662	
correlations refer to rank correlations between successive timepoints whereas lag 2 correlations refer to 663	
correlations between timepoints two steps apart. To facilitate a direct comparison between lag 1 vs. lag 2 664	
correlations, correlations were computed for the following timepoints:  Lag 1 = r(timepoint 1, 2), r(timepoint 665	
2, 3), r(timepoint 3, 4); Lag 2 = r(timepoint 1, 3), r(timepoint 2, 4), r(timepoint 3, 5). It is important to 666	
emphasize that we did not correlate initial pairmate similarity scores with the change in pairmate similarity 667	
as this would produce an artifactual correlation (via regression to the mean). In contrast, a negative rank 668	
correlation (as we observed in CA23DG) cannot be explained by regression to the mean. Mathematically, 669	
if all values at timepoint N partially regressed toward the mean at timepoint N+1, this would yield a positive 670	
rank correlation (i.e., representational structure would be partially preserved). If all values fully regressed 671	
toward the mean (i.e., variance at timepoint N+1 = 0), this would yield a null correlation (r = 0; 672	
representational structure fully abolished). 673	
 674	
Scene-Object Similarity.  To calculate pattern similarity between scenes and objects (related to Fig. 4), 675	
activation patterns for objects were first generated by averaging t-maps across the two object exposure 676	
phases, resulting in a single, mean activity pattern for each object. These object-specific activity patterns 677	
were then correlated with activity patterns from the scene exposure phases at LR – 1 (i.e., the pre-learned 678	
state) and LR (i.e., the learned state). Correlations were separated into three groups:  (1) target correlations 679	
refer to the correlation between a scene and the object it was associated with during the study phase (e.g., 680	
‘barn 1’ and ‘guitar 1’), (2) competitor correlations refer to the correlation between a scene and the object 681	
that was associated with that scene’s pairmate during the study phase (e.g., ‘barn 1’ and ‘guitar 2’), and (3) 682	
across pairmate correlations refer to correlations between a scene and an object that was not associated 683	
with that scene or its pairmate during the study phase (e.g., ‘barn 1’ and ‘scissors 1’). Target and competitor 684	
correlations were expressed relative to across pairmate correlations. 685	
 686	
Statistics. 687	
To compare pairmate similarity scores and other measures across ROIs and learning states, repeated 688	
measures ANOVAs and paired-samples t-tests were used. To test whether pairmate similarity scores and 689	
other measures were significantly positive or negative (i.e., above/below 0), one-sample t-tests were used. 690	
To test whether the negative pairmate similarity score observed in CA23DG at the inflection point depended 691	
on the specific mapping between behavioral and fMRI measures, we randomly shuffled the mapping 692	
between the behavioral inflection point and scene pairmate, within each participant (see Fig. 1d), and then 693	
computed the group-level mean pairmate similarity score at the permuted inflection point. This was 694	
repeated 1,000 times, producing a distribution of 1,000 permuted means. The observed pairmate similarity 695	
score at the inflection point was then compared against this distribution of permuted means.  696	
 697	
Data Availability.  698	
The data that support the findings of this study are available from the corresponding author upon reasonable 699	
request.  700	
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Supplementary information 
 
                        Round
Participant # 1 2 3 4 5 6

Never
Learned

1 1 7 6 4 0 0 0
2 1 1 4 4 6 2 0
3 1 7 5 5 0 0 0
4 0 3 0 5 4 3 3
5 0 2 3 6 4 2 1
6 3 6 2 6 0 1 0
7 0 6 4 3 3 1 1
8 0 2 5 4 5 1 1
9 0 1 1 2 2 2 10

10 0 0 8 2 5 2 1
11 3 3 4 3 2 2 1
12 0 1 2 5 2 5 3
13 1 1 2 4 7 2 1
14 0 0 3 4 4 5 2
15 1 6 7 2 1 1 0
16 1 2 6 1 2 4 2
17 2 3 3 5 3 2 0
18 5 3 2 3 4 0 1
19 0 0 2 7 6 2 1
20 0 1 6 2 1 4 4
21 0 1 3 3 4 7 0
22 1 3 4 2 3 1 4
23 0 6 5 4 1 2 0
24 3 4 7 1 2 1 0
25 1 10 4 3 0 0 0
26 0 0 2 9 2 1 4
27 3 0 4 2 2 1 6
28 1 8 4 3 0 0 2
29 0 6 2 1 1 2 6
30 2 6 6 1 0 2 1
31 1 1 3 6 3 3 1  

 
Table1. Number of pairmates that transitioned to learned round (‘LR’) status, for each participant and each 
round. Note: pairmates that were learned in the first round or never learned were excluded from fMRI 
analyses.  
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