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Visual attention is thought to be supported by three large-scale frontoparietal networks: the frontoparietal control network (FPCN), the
dorsal attention network (DAN), and the ventral attention network (VAN). The traditional view is that these networks support visual
attention by biasing and evaluating sensory representations in visual cortical regions. However, recent evidence suggests that frontopa-
rietal regions actively represent perceptual stimuli. Here, we assessed how perceptual stimuli are represented across large-scale fronto-
parietal and visual networks. Specifically, we tested whether representations of stimulus features across these networks are differentially
sensitive to bottom-up and top-down factors. In a pair of pattern-based fMRI studies, male and female human subjects made perceptual
decisions about face images that varied along two independent dimensions: gender and affect. Across studies, we interrupted bottom-up
visual input using backward masks. Within studies, we manipulated which stimulus features were goal relevant (i.e., whether gender or
affect was relevant) and task switching (i.e., whether the goal on the current trial matched the goal on the prior trial). We found that
stimulus features could be reliably decoded from all four networks and, importantly, that subregions within each attentional network
maintained coherent representations. Critically, the different attentional manipulations (interruption, goal relevance, and task switch-
ing) differentially influenced feature representations across networks. Whereas visual interruption had a relatively greater influence on
representations in visual regions, goal relevance and task switching had a relatively greater influence on representations in frontoparietal
networks. Therefore, large-scale brain networks can be dissociated according to how attention influences the feature representations that
they maintain.
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Introduction
Visual attention is thought to be supported by several frontopa-
rietal networks (Posner and Petersen, 1990; Corbetta and Shul-

man, 2002; Dosenbach et al., 2008). The idea that the brain is
comprised of multiple functional networks has been inspired and
elaborated by resting-state analyses of human fMRI data (Yeo et
al., 2011), which reveal three networks of particular importance
to attentional control: the frontoparietal control network
(FPCN), the dorsal attention network (DAN), and the ventralReceived Sept. 20, 2017; revised Jan. 18, 2018; accepted Jan. 24, 2018.
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Significance Statement

Visual attention is supported by multiple frontoparietal attentional networks. However, it remains unclear how stimulus features
are represented within these networks and how they are influenced by attention. Here, we assessed feature representations in four
large-scale networks using a perceptual decision-making paradigm in which we manipulated top-down and bottom-up factors.
We found that top-down manipulations such as goal relevance and task switching modulated feature representations in atten-
tional networks, whereas bottom-up manipulations such as interruption of visual processing had a relatively stronger influence on
feature representations in visual regions. Together, these findings indicate that attentional networks actively represent stimulus
features and that representations within different large-scale networks are influenced by different forms of attention.
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attention network (VAN). Traditionally, these networks have
been thought to support visual attention by biasing and evaluat-
ing sensory representations within visual cortical areas (Desi-
mone and Duncan, 1995; Egner and Hirsch, 2005; Serences and
Yantis, 2006; Gazzaley and Nobre, 2012). However, recent evi-
dence from pattern-based fMRI studies has blurred the distinc-
tion between sensory representations in visual cortical areas and
control processes in frontoparietal regions. Namely, there is ac-
cumulating evidence that frontoparietal regions actively repre-
sent stimulus features during visual attention and working
memory (Ester et al., 2015; Lee and Kuhl, 2016; Xu, 2017). These
findings suggest a potentially transformative approach for under-
standing the functional role of frontoparietal networks in visual
attention: that frontoparietal networks can be characterized –
and dissociated from visual cortical regions – in terms of how
they represent stimuli in relation to bottom-up and top-down
factors.

Attention manipulations that may dissociate stimulus repre-
sentations in frontal and parietal cortices from those in visual
cortex include robustness to interruption of visual processing,
goal relevance, and task switching. For example, working mem-
ory representations in the intraparietal sulcus (Bettencourt and
Xu, 2016) and prefrontal cortex (Miller et al., 1996) are more
robust to distraction than are representations in visual cortical
areas. Likewise, multiple frontal and parietal regions preferen-
tially represent goal-relevant stimulus information, as shown via
electrophysiological recordings in monkeys (Rainer et al., 1998;
Swaminathan and Freedman, 2012; Roy et al., 2014; Sarma et al.,
2016) and pattern-based fMRI in humans (Kuhl et al., 2013;
Sreenivasan et al., 2014; Ester et al., 2015; Bracci et al., 2017).
Finally, dorsal frontal and parietal regions show increased uni-
variate activation on trials when goals change (task switching)
(Braver et al., 2003; Monsell, 2003; Yeung et al., 2006; Ravizza and
Carter, 2008; Bode and Haynes, 2009; Esterman et al., 2009).
Collectively, these findings suggest that different forms of atten-
tion potentially differentiate stimulus representations across
frontoparietal and visual regions. However, there has been lim-
ited application of “representation-based” analyses to large-scale
networks. Do frontoparietal networks actively and coherently
represent stimulus information? Are representations in different
networks influenced by different forms of attention?

Here, we conducted a pair of pattern-based fMRI studies to
determine how various attention-related manipulations (inter-
ruption of visual processing, goal relevance, and task switching)
influence feature representations in frontoparietal attentional
networks (FPCN, DAN, and VAN) and, as a comparison, within
a network of visual regions (VisN). In both studies, subjects
viewed faces that varied along two independent dimensions: gen-
der (male vs female) and affect (happy vs grumpy). On each trial,
subjects made a perceptual decision related to a cued face feature
(e.g., “Male?”). Using pattern classification analyses, we first
tested for representation of stimulus features within each net-
work and, importantly, tested whether frontoparietal regions
within a common network maintained “coherent” representa-
tions. Next, we determined how each attention manipulation
influenced feature representations across networks. Visual inter-
ruption was manipulated across studies: in Study 1, stimuli were
followed by a visual mask; in Study 2, there was a longer stimulus
duration and no mask. Goal relevance was manipulated by vary-
ing the dimension (gender/affect) that was currently relevant.
Finally, task switching was manipulated by alternating between
goals on a trial-by-trial manner, resulting in trials in which goals
repeated (stay trials) and trials in which goals changed (switch

trials). We predicted that frontoparietal networks would ac-
tively and coherently represent stimulus features and that
frontoparietal representations would be relatively more sensitive
to top-down manipulations (goals, task switching), whereas rep-
resentations in VisN would be relatively more sensitive to
bottom-up manipulations (interruption).

Materials and Methods
Subjects
Thirty-two (19 female; mean age � 22 years) right-handed, native Eng-
lish speakers from the University of Oregon community participated in
the fMRI studies. Sixteen subjects participated in Experiment 1 and 16
participated in Experiment 2. Four total subjects were excluded. In Ex-
periment 1, one subject was excluded for poor task performance (65%
accuracy, which was �4 SDs away from the average performance of 95%)
and one was excluded for excessive head motion. In Experiment 2, two
subjects were excluded for exiting the scanner before task completion
(one subject complained of nausea and the other began coughing repeat-
edly; each missing two of six runs). Therefore, for each experiment, there
was a final set of 14 subjects included for analyses. All subjects had nor-
mal or corrected-to-normal vision. Informed consent was obtained in
accordance with the University of Oregon Institutional Review Board.
The raw, de-identified data and the associated experimental and analysis
codes used in this study can be accessed via the Kuhl laboratory website
(http://kuhllab.com/publications/).

An additional 14 (5 female; mean age � 19) right-handed, native
English speakers from the University of Oregon community participated
in a follow-up behavioral study. All subjects had normal or corrected-to-
normal vision. Informed consent was obtained in accordance with the
University of Oregon Institutional Review Board and subjects received
course credit for participating.

Materials
Stimuli consisted of 88 face images drawn from various internet sources.
From this pool, 16 faces were designated as “target” faces, 24 as “filler”
faces, and 48 as “localizer” faces. Within each set (target, filler, localizer)
gender and affect were balanced: 1/4 of the faces were “happy, males”; 1/4
were “happy, females”; 1/4 were “grumpy, males”; and 1/4 were
“grumpy, females.” Gender and affect were determined, with unanimous
agreement, by two independent raters.

Experimental design and statistical analysis
Procedure and design. Each trial began with the presentation of one of
four “goal cues” or questions: “Male?,” “Female?,” “Happy?,” or
“Grumpy?” The goal was presented for 1400 ms (Fig. 1A) and was im-
mediately followed by a face stimulus. In Experiment 1, the face was
presented for 100 ms and immediately followed by a visual mask com-
posed of scrambled face parts for 500 ms. In Experiment 2, the face was
presented for 600 ms with no mask. After the mask (Experiment 1) or
face (Experiment 2), there was a 6 s interstimulus interval (ISI) during
which a fixation cross was shown. On each trial, the subject’s task was to
respond “Yes” or “No” via button box as to whether the face matched the
goal/question. Subjects could respond at any point after the onset of the
face, including during the ISI.

Trials were organized into blocks. Each block contained 17 trials, with
the first trial in each block representing a “filler” face. The designation of
the first trial as a filler face was particularly important for analyses of
“stay” versus “switch” trials because the first trial cannot be designated as
either a stay or switch trial (see below). The stimuli for the remaining 16
trials in each block were target faces. Each of the 16 target faces appeared
exactly once per block. Within each block, only two of the four goals
were presented (either “Male?” or “Female?” or either “Happy?” or
“Grumpy?”). The goals alternated in an A-A-B-B-A-A-B-B manner (Fig.
1C). Therefore, there was a constant alternation between switch trials
(goal change) and stay trials (goal repeat). A 3 s get ready screen at the
start of each block informed subjects which two goals would occur within
that block.

Each of the six scan runs contained four blocks. The four blocks in each
run comprised each of the four possible combinations of goals (Male/
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Grumpy, Female/Grumpy, Male/Happy, and Female/Happy). Block or-
der was randomized across runs and across subjects. The order of the 16
target faces was also randomized in each block. Across the six scan runs,
there was a grand total of 408 trials (including filler trials). To familiarize
subjects with the task, before entering the scanner, subjects completed a
24-trial practice round. Subjects practiced each goal combination (e.g.,
“Male?/Happy?”) and the stimuli used were the 24 filler faces.

After the main experiment, subjects completed two localizer runs.
However, because data from the localizer scan are not reported here,
details of the task are not included.

The design of the behavioral follow-up study was identical to Experi-
ment 1, with the exception of the ISI (3 s instead of 6 s) and the inclusion
of a post-task questionnaire, in which subjects were asked increasingly
specific questions as to whether they noticed the task switching structure.
We first asked subjects if they noticed any patterns throughout the task.
We then noted that there was a pattern to the goal cues and asked if they
were aware of such a pattern. Finally, we explicitly asked subjects if they
noticed the A-A-B-B-A-A-B-B structure of the goal cues.

fMRI data acquisition
Imaging data were collected on a Siemens 3 T Skyra scanner at the Robert
and Beverly Lewis Center for NeuroImaging at the University of Oregon.
Before the functional imaging, a whole-brain high-resolution anatomical
image was collected for each subject using a T1-weighted protocol (grid
size 256 � 256; 176 sagittal slices; voxel size 1 � 1 � 1 mm). Whole-brain
functional images were collected using a T2*-weighted multiband accel-
erated EPI sequence (TR � 2 s; TE � 25 ms; flip angle � 90°; 72 hori-
zontal slices; grid size 104 � 104; voxel size 2 � 2 � 2 mm). For the main
experiment, six functional scans were collected, each consisting of 280
volumes. For the localizer task, two functional scans were collected each
consisting of 225 volumes.

fMRI data preprocessing
Preprocessing of the functional data was conducted using FSL 5.0
(FMRIB Software Library, http://www.fmrib.ox.ac.uk/fsl; Smith et al.,
2004) and custom scripts. Images were first corrected for head motion
using MCFLIRT (Jenkinson et al., 2002). Motion-corrected images were
smoothed with a Gaussian kernel with 1.7 mm SD (�4 mm FWHM).

Network selection
We assessed feature representations in four resting-state networks de-
fined from a large, independent sample of subjects (Yeo et al., 2011): the
FPCN, DAN, VAN, and VisN (Fig. 1D). The resting-state networks were
generated for each subject using their high-resolution anatomical image
and the FreeSurfer cortical parcellation scheme (http://surfer.nmr.mgh.
harvard.edu). The networks were then coregistered to the functional
data.

Univariate analyses
Univariate data analyses were conducted under the assumptions of the
general linear model (GLM) using SPM12 (http://www.fil.ion.ucl.ac.uk/
spm). To test for univariate effects of switch versus stay trials, we defined
a model with separate regressors for switch and stay trials. The model also
included regressors for scan run and six motion parameters for each run.
Switch versus stay trials were contrasted using paired-samples t tests
resulting in subject-specific statistical parametric maps. These t values
were then averaged within network, resulting in a single mean t statistic
per network and subject. For each network, one-sample t tests were then
applied across subjects to test for effects of switch versus stay trials at the
group level.

Pattern classification analyses
For pattern classification analyses, functional data were detrended, high-
pass filtered (0.01 Hz), and z-scored within scan (mean response of each

Figure 1. Experimental design. A, In a given trial, a goal cue was presented for 1400 ms. There were one of four possible goal cues (“Male?,” “Female?,” “Happy?,” or “Grumpy?”). After the goal,
a face was presented for 100 ms. In Experiment 1, the face was followed by a mask image for 500 ms. In Experiment 2, the face was presented for an additional 500 ms. A fixation cross was then
presented for 6000 ms. Subjects responded “Yes” or “No” as to whether the face matched the goal. B, Faces varied along two dimensions: gender and affect. Note that faces shown here were not
those used in the experiment. Permission was given for these faces to be published. C, Each block followed the same general structure. At the start of each block, subjects were cued as to which goals
would be relevant for that block. Only two goals were relevant in each block (one from each dimension) and these goals alternated in a fixed AABBAABB schedule. This enforced a constant alternation
between switch and stay trials. D, Four independently defined resting-state networks of a priori interest (Yeo et al., 2011).
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voxel within each scan � 0). Next, data were temporally compressed via
a weighted averaged of TRs 3, 4, and 5 (40%, 40%, 20%, respectively)
relative to trial onset (representing 4 –10 s after the goal was presented).
TRs 3 and 4 were given greater weight because the hemodynamic re-
sponse tends to peak at these TRs. The temporally compressed data re-
sulted in a single spatial pattern of activity for each trial. Before pattern
classification analyses were performed, an additional round of z-scoring
was applied across voxels to the trial-specific spatial patterns. This final
round of z-scoring resulted in each trial-specific spatial volume having a
mean activation equal to 0. Therefore, mean univariate activity was
matched precisely across all conditions and trial types (Kuhl and Chun,
2014; Long et al., 2016). Pattern classification analyses were performed
using penalized (L2) logistic regression ( penalty parameter � 1) imple-
mented via the Liblinear toolbox (Fan et al., 2008) and custom MATLAB
(RRID:SCR 001622) code. Classifier performance was assessed in two
ways. “Classification accuracy” represented a binary coding of whether
the classifier successfully guessed the queried feature of the face. We used
classification accuracy for general assessment of classifier performance
(i.e., whether features could be decoded). “Classifier evidence” was a
continuous value reflecting the logit-transformed probability that the
classifier assigned the correct feature each trial. Classifier evidence was
used as a trial-specific, continuous measure of feature information,
which was used to assess trial-level correlations in feature representations
within and between networks (see below).

For each subject, four separate classifiers were trained to decode stim-
ulus features. A given classifier was trained to discriminate either male
from female faces (gender classifier) or happy from grumpy faces (affect
classifier). Additionally, separate gender classifiers were applied for trials
in which the goal was either “Male?” or “Female?” (i.e., trials in which
gender was relevant) versus trials in which the goal was either “Happy?”
or “Grumpy?” (i.e., trials in which affect was relevant). Likewise, separate
affect classifiers were applied for trials in which affect was the relevant
dimension versus trials in which gender was the relevant dimension.
Goal-relevant feature representations were indexed by performance of
the gender classifier on gender-relevant trials and performance of the
affect classifier on affect-relevant trials. Goal-irrelevant feature represen-
tations were indexed by performance of the gender classifier on affect-
relevant trials and performance of the affect classifier on gender-relevant
trials. All classification analyses were performed using leave-one-run-out
cross-validation. A critical element of our design and implementation of
classification analyses is that we deliberately orthogonalized feature in-
formation from behavioral responses. In other words, there was no con-
sistent mapping between feature information and motor response. As an
example, during trials in which gender was relevant, 50% of the time, a
female face would require a “Yes” response (i.e., on “Female?” trials) and,
50% of the time, a female face would require a “No” response (i.e., on
“Male?” trials). Therefore, successful decoding of goal-relevant feature
information cannot be attributed to decoding of the planned or executed
motor responses. A second critical element of our design is that, across
trials, goals and features were not always matched. In fact, they were
independent. That is, when presented with a goal cue of “Male?,” the
subsequently presented stimulus was equally likely to be a male or female
face. This design feature critically allowed us to deconfound goal and
feature information. In other words, decoding of stimulus features can-
not be driven exclusively by goal information.

To decode top-down goals, an additional four classifiers were applied.
The four classifiers corresponded to the four different possible combina-
tions of goals in a given block: “Male?” versus “Grumpy?,” “Male?” versus
“Happy?,” “Female?” versus “Grumpy?,” and “Female?” versus “Happy?”
Classification was performed using leave-one-run-out cross-validation.
Classification accuracy was averaged across all four classifiers to provide
a single measure of goal decoding accuracy. Because goal decoding could
potentially be driven by low-level information such as visual word form
or subvocal articulation, we also tested whether goal classifiers general-
ized to different goals corresponding to the same dimensions. For exam-
ple, a classifier trained to discriminate between “Male?” versus “Happy?”
faces can also be thought of as a classifier that is discriminating between
the gender versus affect dimensions. If so, then a classifier trained on
“Male?” versus “Happy?” may successfully transfer to the discrimination

of “Female?” versus “Grumpy?” Successful transfer would suggest that
the goal representation is, at least in part, a representation of the relevant
dimension as opposed to the specific word cue per se. Therefore, for each
of the four goal classifiers described above, we tested for transfer to the
“complementary” pair of goals; i.e., goal pairs that corresponded to dis-
crimination between the same dimensions. This dimension decoding
analysis was again performed using leave-one-run-out cross-validation
so as to match the goal decoding analyses in terms of statistical power.
Classification accuracy was averaged across all four transfer tests to pro-
vide a single aggregate value of dimension decoding accuracy.

Representational coherence analysis
To assess the coherence of representations within and between networks,
we decomposed each of the three attentional networks into separate
frontal and parietal ROIs: frontal-FPCN, parietal-FPCN, frontal-DAN,
parietal-DAN, frontal-VAN, and parietal-VAN. None of the voxels from
the frontal ROIs were contiguous with voxels from the parietal ROIs.
These ROIs were generated using the average subject brain in Free Surfer.
The ROIs were then projected from this volume space to surface space
and then converted from average surface space to subject space. Because
the number of voxels in these regions varied both within and across
subjects and differences in ROI size are likely to influence classifier per-
formance, classification analyses were performed by randomly subsam-
pling 500 voxels from each of the six frontal and parietal ROIs. This
process was repeated for 100 iterations for each ROI and subject, with
each iteration involving a different random sample of 500 voxels. Classi-
fication of goal-relevant and goal-irrelevant features was performed us-
ing the same approach described above. Here, however, classifier
evidence (a continuous value reflecting the strength of classifier informa-
tion) was the critical dependent measure. For each subject, trial-by-trial
measures of classifier evidence were correlated within network (e.g., a
correlation between classifier evidence from frontal-FPCN and parietal-
FPCN) and between network (e.g., frontal-FPCN and parietal-DAN).
The correlation analyses were separately performed for relevant and ir-
relevant feature evidence. In total, we obtained 50,400 � values: 100 iter-
ations � 9 correlations � 28 subjects � 2 relevance conditions. All �
values were Fisher-z transformed before averaging across iterations and
goal relevance. Finally, z-� values were averaged across the three “within”
network correlations (e.g., correlations between frontal-FPCN and
parietal-FPCN) and the six “between” network correlations (e.g., corre-
lations between frontal-FPCN and parietal-DAN), resulting in two z-�
values for each subject, mean within network correlation, and mean
between network correlation.

Statistical analyses
One-sample t tests were used to compare representational coherence
measures (z-� values) to zero. Paired-sample t tests were used to compare
classification accuracy across subjects to chance decoding accuracy, as
determined by permutation procedures. Namely, for each subject and
network, we shuffled the condition labels of interest (e.g., “male” and
“female” for the gender feature classifier) and then calculated classifica-
tion accuracy. We repeated this procedure 1000 times for each network
and subject and then averaged the 1000 shuffled accuracy values for each
network and subject. These mean values were used as network- and
subject-specific empirically derived measures of chance accuracy. Paired
samples t tests compared the true (unshuffled) accuracy values to the
shuffled accuracy values. For these paired-sample t tests, we report un-
corrected p-values; however, all of the p-values exceeded the threshold
for significance after Bonferroni correction; that is, after adjusting for the
fact that we tested effects across four networks (i.e., a threshold of p �
0.0125). Mixed-effects ANOVAs were used to compare conditions
and/or networks; experiment was always included as a factor when data
from both experiments were included.

Results
Large-scale networks represent stimulus features
Motivated by recent evidence that activity patterns in frontopa-
rietal regions represent stimulus features (Swaminathan and
Freedman, 2012; Ester et al., 2015; Lee and Kuhl, 2016; Bracci et
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al., 2017), we first tested for representations of face features (gen-
der, affect) within each of the three attentional networks (FPCN,
DAN, VAN) and, for comparison, within VisN. Importantly, and
as described in the Materials and Methods, our procedure delib-
erately deconfounded feature information from behavioral re-
sponses, so decoding accuracy cannot be explained by decoding
of response preparation or execution. Averaging across the gen-
der and affect classifiers (producing a single value per subject
reflecting feature decoding), accuracy was above chance in each
of the four networks (FPCN, t(27) � 5.82, p � 0.001; DAN, t(27) �
5.37, p � 0.001; VAN, t(27) � 5.42, p � 0.001; VisN, t(27) � 4.34,
p � 0.001; Figure 2A), confirming the sensitivity of these large-
scale networks to feature information. There were no significant
differences in decoding accuracy for the gender versus affect clas-
sifiers for any of the four networks (t � 1, p � 0.35). A mixed-
effects ANOVA with factors of network (FPCN, DAN, VAN,
VisN) and experiment (1, 2) did not reveal a main effect of net-
work (F(3,78) � 0.49, p � 0.69), indicating that overall feature
decoding was comparable across networks. The effects of exper-
iment are considered below.

Representational coherence within networks
The preceding results demonstrate that activity patterns in
resting-state networks represent stimulus features. However, the
use of large-scale networks as ROIs is predicated on the notion
that individual components (brain regions) within these net-
works are acting together in a functionally relevant way to sup-
port behavior. To test for coherence of representations within the
attentional networks, we divided each of the three attentional
networks into frontal and parietal subregions (see Materials and
Methods and ROIs from a sample subject in Fig. 2B) and corre-
lated trial-by-trial feature evidence within and between each net-
work (Fig. 2C). Correlations were significantly �0 both within
networks (M � 0.15, SD � 0.03; t(27) � 24.7, p � 0.001) and
between networks (M � 0.14, SD � 0.03; t(27) � 27.4, p � 0.001;
Fig. 2D). A 2 � 2 mixed-effects ANOVA with factors of network
pairing (within, between) and experiment (1, 2) revealed a main
effect of network pairing (F(1,26) � 23.9, p � 0.001), with stronger
correlations within networks than between networks. This
main effect of network pairing did not interact with experi-
ment (F(1,26) � 0.03, p � 0.86). Therefore, although feature rep-
resentations were present across all of the attentional networks,
there was greater representational coherence within networks
than between networks, validating the use of these networks as
large-scale ROIs for pattern-based analyses.

Robustness of feature representations to visual interruption
We next tested the relative sensitivity of feature representations in
each network to the interruption of visual processing by compar-

ing decoding accuracy across experiments. Sensitivity to visual
interruption would be reflected by relatively lower decoding ac-
curacy in Experiment 1 (100 ms stimulus � 500 ms visual mask)
than in Experiment 2 (600 ms stimulus � no visual mask; Fig. 3)
mixed-effects ANOVA with factors of experiment (1, 2) and net-
work (FPCN, DAN, VAN, VisN) revealed a main effect of exper-
iment (F(1,26) � 26.5, p � 0.001), with lower decoding accuracy in
Experiment 1 than Experiment 2, consistent with a disruptive
influence of interruption. Relative sensitivity to visual interrup-
tion markedly varied across networks, as reflected by a significant
experiment by network interaction (F(3,78) � 6.2, p � 0.001).

Post hoc independent sample t tests revealed no reliable differ-
ences between experiments in FPCN (t(26) � 1.1, p � 0.29), a
trend in DAN (t(26) � 2.0, p � 0.06), and reliably greater feature
decoding in Experiment 2 than Experiment 1 in VAN (t(26) � 3.2,
p � 0.003) and VisN (t(26) � 5.8, p � 0.001). Therefore, the
experimental manipulation of including a brief visual mask (Ex-
periment 1) versus extended stimulus presentation (Experiment
2), the only difference between the two experiments, robustly
diminished feature representations in VisN and VAN, but had
relatively less influence on feature representations in DAN and
FPCN.

Goal relevance influences feature representations
We next tested the relative sensitivity of feature representations in
each network to trial-specific behavioral goals; that is, whether
goal-relevant feature information was stronger than goal-
irrelevant feature information (Kuhl et al., 2013; Roy et al., 2014;
Sarma et al., 2016; Bracci et al., 2017). For example, on trials in
which gender was the relevant dimension (“Male?” or “Female?”

Figure 2. Feature decoding across networks. A, Feature decoding averaged across experiments and goal relevance. Feature decoding was reliably above chance in all networks. B–D, Represen-
tational coherence within and between networks. B, Each attentional network was divided into discontiguous frontal and parietal subregions (here shown for a single subject). C, Correlations were
computed for trial-level measures of goal-relevant feature evidence for each pair of frontal and parietal subregions. Within-network correlations (dark gray) corresponded to correlations between
pairs of subregions from the same network (e.g., frontal-FPCN and parietal-FPCN). Between-network correlations (light gray) corresponded to correlations between pairs of subregions from
different networks (e.g., frontal-FPCN and parietal-DAN). This analysis was then repeated for goal-irrelevant feature evidence and Fisher Z-transformed � values were then averaged across the
goal-relevant and goal-irrelevant correlation analyses. D, Within-network correlations were reliably stronger than between-network correlations. ***p � 0.001.

Figure 3. Feature decoding as a function of interruption. Interruption of visual processing
was manipulated across experiments. In Experiment 1 (clear circles), stimuli were followed by a
visual mask. In Experiment 2 (filled circles), there was a longer stimulus duration and no mask.
There was a significant network-by-experiment interaction ( p � 0.001). Significant differ-
ences between experiments were observed in VAN and VisN. Error bars indicate SEM. �p �
0.10, **p � 0.01, ***p � 0.001.

Long and Kuhl • Stimulus Features in Attentional Networks J. Neurosci., March 7, 2018 • 38(10):2495–2504 • 2499



trials), goal-relevant feature information was indexed by accu-
racy of the gender classifier and goal-irrelevant feature informa-
tion was indexed by accuracy of the affect classifier. To be clear,
for this analysis, decoding accuracy refers only to the feature
information in the actual face image. Therefore, if gender was the
relevant dimension and the face image was a female face, then the
classifier was accurate if it guessed “Female” regardless of whether
the current goal was “Male?” or “Female?” This approach en-
sured that feature information was not confounded with goal
information. Separate classifiers were trained/tested for relevant
and irrelevant feature representations. That is, one set of classifi-
ers was specifically trained and tested on goal-relevant feature
information and a separate set was trained and tested on goal-
irrelevant feature information. Separate classifiers were used for
goal-relevant and goal-irrelevant feature decoding so that there
was no assumption that goal-relevant and goal-irrelevant feature
representations are encoded in a common (generalizable) way.

A mixed-effects ANOVA with factors of experiment, goal rel-
evance (relevant, irrelevant), and network (FPCN, DAN, VAN,
VisN) revealed a marginally significant main effect of relevance
(F(1,26) � 3.93, p � 0.06), reflecting a trend for stronger decoding
of goal-relevant than goal-irrelevant feature information (Fig. 4).
The effect of relevance did not vary by experiment (F(1,26) � 0.07,
p � 0.80). More critically, there was a significant interaction
between network and goal relevance (F(3,78) � 3.12, p � 0.03),
indicating that the sensitivity of feature representations to top-
down goals varied across the networks. This interaction between
network and relevance did not vary by experiment (F(3,78) � 1.24,
p � 0.30).

For each network, we ran follow-up mixed-effects ANOVAs
with factors of goal relevance (relevant, irrelevant) and experi-
ment to test for effects of goal relevance within each network. A
significant main effect of goal relevance (relevant � irrelevant)
was observed in VAN (F(1,26) � 13.9, p � 0.001), with a similar
trend in FPCN (F(1,26) � 3.7, p � 0.07). There was no effect of
relevance in DAN (F(1,26) � 0.03, p � 0.87) or VisN (F(1,26) �
0.12, p � 0.73). None of the main effects of relevance interacted
with experiment (F � 2.5, p �.1).

Task switches influence feature representations
In the preceding section, we considered whether goal-relevant
features were more strongly represented than goal-irrelevant fea-
tures. However, goal cues (and, therefore, the relevant feature
dimension) changed every two trials, creating both switch (goal
change) and stay (goal repeat) trials. To measure the influence of

goal cue switches, we first probed the behavioral data for effects of
task switching. Reaction times (RTs) were compared as a func-
tion of trial type (switch, stay) and experiment in a mixed-effects
ANOVA. As expected, RTs were significantly greater for switch
trials (M � 1423 ms, SD � 259 ms) than stay trials (M � 1398 ms,
SD � 269 ms; F(1,26) � 12.7, p � 0.001; Fig. 5A). This effect did
not interact with experiment (F(1,26) � 3.2, p � 0.08). Accuracy
did not significantly differ across switch and stay trials (switch,
M � 96.92%, SD � 3.17%; stay, M � 97.52%, SD � 2.17%;
t(27) � �1.5, p � 0.13). There was a trend toward an interaction
between switch/stay and experiment (F(1,26) � 4.03, p � 0.06),
reflecting a relatively greater effect of accuracy (stay � switch) in
Experiment 2.

To determine whether the predictable nature of goal cues (i.e.,
the A-A-B-B-A-A-B-B alternation) was detected by subjects
and/or influenced switch costs (Rogers and Monsell, 1995; Mon-
sell, 2003), we ran an independent behavioral study in which 14
subjects completed an experiment virtually identical to Experi-
ment 1 (see Materials and Methods). Critically, however, this
behavioral experiment also included a postexperiment question-
naire to assess whether subjects became aware of the alternating
pattern of goal cues. Across all subjects, RTs were significantly
greater for switch trials (M � 1298 ms, SD � 227 ms) than stay
trials (M � 1257 ms, SD � 204 ms; t(13) � 2.58, p � 0.02),
consistent with the data from Experiments 1 and 2. Of the 14
subjects, four were able to explicitly describe the task structure
(i.e., they were aware of the pattern of alternation). Among these
four subjects, switch costs were numerically greater (M � 59 ms)
relative to subjects who were unaware of the task structure (M �
33 ms). These data indicate that, despite the highly structured
task alternation, most subjects did not become aware of this
structure. In addition, at least in this small sample of subjects,
there was no evidence that awareness of the structure reduced
switch costs. Therefore, it is unlikely that explicit awareness of the
task structure had a major influence on fMRI-based effects of task
switching.

Prior univariate fMRI studies of task switching have consis-
tently reported increased activation during switch versus stay tri-
als in dorsal frontoparietal regions (overlapping with FPCN and
DAN), whereas more ventral regions (overlapping with VAN) are
generally insensitive to switch effects (Kimberg et al., 2000; Rush-
worth et al., 2002; Braver et al., 2003; Brass and Von Cramon,
2004; Corbetta et al., 2008). In light of these prior studies, and as
a comparison point for our decoding analyses, we tested for uni-
variate effects of task switching in each of the four resting-state
networks. Consistent with prior findings, we found reliably
greater activation for switch than stay trials in FPCN (t(27) � 4.0,
p � 0.001) and DAN (t(27) � 2.5, p � 0.02) and no effect in VAN
(t(27) � 1.2, p � 0.23) or VisN (t(27) � 0.23, p � 0.82; Fig. 5B). Post
hoc independent-samples t tests within each network did not
reveal any between-experiment differences in switch effects in
FPCN, DAN, or VAN (t � 1.5, p �.1). In VisN, there was a
reliable difference between experiment (t(26) � �2.3, p � 0.03),
although neither experiment alone showed a reliable difference
between switch and stay trials. In Experiment 1, activation was
relatively greater for stay than switch trials (t(13) � �1.7, p �
0.12), whereas in Experiment 2, activation was relatively greater
for switch than stay trials (t(13) � 1.6, p � 0.14).

Next, we considered the novel question of whether task
switches influenced the strength of feature representations. For
this analysis, we used the same classifiers described above and
then back-sorted trial-specific accuracy values as a function of
trial type (switch vs stay). Decoding accuracy was entered into a

Figure 4. Feature decoding as a function of goal relevance. Orange indicates goal-relevant
feature decoding (e.g., decoding whether a face was male vs female when the goal was “Male?”
or “Female?”). Blue indicates goal-irrelevant feature decoding (e.g., decoding whether a face
was male vs female when the goal was “Happy?” or “Grumpy?”). There was a significant inter-
action between network and goal relevance ( p � 0.03). Goal-relevant feature decoding was
reliably greater than goal-irrelevant feature decoding in VAN, with a similar trend in FPCN.
�p � 0.10, ***p � 0.001.
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mixed-effects ANOVA with factors of task switch (switch, stay),
relevance (relevant, irrelevant), network, and experiment. The
main effect of task switch was not significant (F(1,26) � 0.09, p �
0.77). However, there was a robust 3-way interaction between
the effects of task switch, relevance, and network (F(3,78) � 4.50,
p � 0.006). Considering goal-relevant feature information alone,
a mixed-effects ANOVA with factors of task switch, network, and
experiment revealed a significant interaction between task switch
and network (F(3,78) � 4.87, p � 0.004). For goal-irrelevant fea-
ture information, a similar mixed-effects ANOVA did not reveal
an interaction between task switch and network (F(3,78) � 0.60,
p � 0.62). Therefore, the influence of task switches on feature
representations varied across the networks, but only when con-
sidering goal-relevant feature representations.

The interaction between task switch and network for goal-
relevant feature representations was driven by relatively stronger
representations on switch versus stay trials in DAN and VAN and
an opposite pattern in FPCN. This interaction did not signifi-
cantly vary by experiment (F(3,78) � 2.25, p � 0.09). Follow-up
mixed-effects ANOVAs with factors of task switch (switch, stay)
and experiment revealed that, within FPCN, there was a signifi-
cant effect of task switch (F(1,26) � 6.3, p � 0.02), reflecting rela-
tively lower feature information on switch than stay trials. In
contrast, there were opposite trends (greater feature information
on switch than stay trials) in DAN (F(1,26) � 4.2, p � 0.05) and
VAN (F(1,26) � 4.2, p � 0.05). In VisN, there was no effect of task
switch (F(1,26) � 1.1, p � 0.31). The effect of task switch inter-
acted with experiment in FPCN (F(1,26) � 6.6, p � 0.02), but not
in DAN, VAN, or VisN (F � 2.2, p �.15). For FPCN, the inter-
action between experiment and task switch reflected a greater
decoding advantage on stay versus switch trials in Experiment 2
compared with Experiment 1. Collectively, these data indicate
that task switches had an effect on goal-relevant feature informa-
tion, but this effect varied across networks and was most evident
in the attentional networks.

Network representations of task goals
Although our central aim was to assess feature representations
across networks, a complementary question is how/whether
these networks represent top-down behavioral goals. Previous
research has revealed top-down goal effects within multiple fron-
toparietal regions (Esterman et al., 2009; Greenberg et al., 2010;
Liu and Hou, 2013; Waskom et al., 2014; Waskom and Wagner,
2017). Here, to test for goal representations, we trained and tested
four separate pairwise classifiers to distinguish each combination
of gender and affect goals. For example, one classifier was trained
to dissociate “Male?” versus “Grumpy?” goal cues. Averaging

across the pairwise classifiers, goal decod-
ing was significantly above chance in each
of the four networks (FPCN, t(27) � 8.8,
p � 0.001; DAN, t(27) � 10.6, p � 0.001;
VAN, t(27) � 5.9, p � 0.001; VisN, t(27) �
10.8, p � 0.001; Fig. 6). A mixed-effects
ANOVA with factors of experiment and
network revealed no main effect of exper-
iment (F(1,26) � 0.76, p � 0.39), a main
effect of network (F(3,78) � 8.53, p �
0.001), and no interaction between net-
work and experiment (F(3,78) � 0.31, p �
0.81). Adding task switch (switch, stay) as
a factor (Waskom et al., 2014) revealed no
main effect of switch on goal decoding
(F(1,26) � 0.01, p � 0.92), nor was there

an interaction between the factors of task switch and network
(F(3,78) � 0.70, p � 0.56).

Because goals were communicated to subjects via word
cues, successful goal decoding potentially reflects multiple in-
fluences: (1) “true” abstract goal representations, (2) represen-
tations of the visual word form of each goal cue, and/or (3)
subvocal rehearsal of the word cues. Therefore, as a complemen-
tary measure, we also assessed “dimension” decoding; that is,
decoding of the dimension (gender or affect) that was relevant on
each trial. Dimension decoding was assessed by testing for trans-
fer of classifiers across goal cues but within dimensions. For
example, a classifier trained to discriminate “Male?” versus
“Grumpy?” goals would be tested on “Female?” versus “Happy?”
goals. Successful transfer would occur if the representation of the
“Male?” goal is similar to the representation of the “Female?” goal
and, likewise, if “Grumpy?” is similar to “Happy?” Although this
analysis does not entirely rule out effects of visual word form or
subvocal rehearsal, it at least reduces these concerns. One-sample
t tests revealed reliable dimension decoding in all four networks
(FPCN, t(27) � 7.9, p � 0.001; DAN, t(27) � 7.5, p � 0.001; VAN,
t(27) � 5.1, p � 0.001; VisN, t(27) � 10.0, p � 0.001). A mixed-
effects ANOVA with factors of experiment and network revealed
no main effect of experiment (F(1,26) � 1.09, p � 0.31), a main
effect of network (F(3,78) � 5.53, p � 0.002), and no reliable
interaction between network and experiment (F(3,78) � 0.17,
p � 0.92).

Finally, to compare goal decoding and dimension decoding
directly, we ran a mixed-effects ANOVA with factors of goal level
(goal decoding vs dimension decoding), network, and experi-
ment. There was a significant main effect of goal level (F(1,26) �
25.86, p � 0.001), reflecting lower dimension decoding accuracy
than goal decoding accuracy, which is not surprising given that
dimension decoding requires transfer of the classifier to non-
identical goal cues. There was a significant main effect of network
(F(3,78) � 8.32, p � 0.001), reflecting (as with the separate
ANOVAs for goal decoding and dimension decoding) relatively
lower decoding accuracy in VAN than in the other networks (Fig.
6). The interaction between goal level and network was also sig-
nificant (F(3,78) � 2.95, p � 0.04), indicating that the “cost” of
transferring across goal cues (but within dimensions) varied
across networks. Namely, the difference between goal decoding
and dimension decoding was most pronounced in VisN (Fig. 6).

Discussion
Here, using pattern-based fMRI methods and a perceptual
decision-making task, we compared representations of stimulus
features across multiple resting-state networks. We specifically

Figure 5. Effects of task switching. A, Difference in RTs (ms) between switch and stay trials. RTs were significantly slower for
switch trials than stay trials. B, Univariate contrast of switch versus stay trials. Activation was significantly greater for switch than
stay trials in both FPCN and DAN. C, Goal-relevant feature decoding separated by switch and stay trials. There was a significant
interaction between switch/stay and network, reflecting greater goal-relevant feature decoding on stay than switch trials in FPCN;
the opposite trends were true for DAN and VAN. �p � 0.10, *p � 0.05, **p � 0.01, ***p � 0.001.
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targeted networks that are thought to contribute to attention and
cognitive control (FPCN, DAN, and VAN; Dosenbach et al.,
2008; Cole et al., 2013; Sestieri et al., 2017) and, as an important
comparison, visual cortical networks. Although stimulus features
were reliably decoded from each network, of critical interest was
how feature representations in each network were influenced by
three attentional manipulations: (1) interruption of visual pro-
cessing, (2) goal relevance, and (3) task switching. Whereas
bottom-up manipulations (interruption) had a relatively greater
influence on feature representations within VisN, top-down ma-
nipulations (goals and task switches) had a relatively greater
influence on representations in attentional networks. These
findings reveal an important dissociation between feature rep-
resentations in higher-level attentional networks and feature
representations in visual cortex.

Whereas most decoding studies use spatially contiguous ROIs
or searchlight analyses, we decoded from large, spatially discon-
tiguous networks identified from independent studies of resting-
state connectivity (Vincent et al., 2008; Yeo et al., 2011). We used
these resting-state networks because they have been linked spe-
cifically to attentional processes (Fox et al., 2006; Corbetta et al.,
2008; Gratton et al., 2017). That said, these networks have been
defined based on correlations in univariate responses during rest
and it was an open question whether regions within these
networks would exhibit correlated feature representations, parti-
cularly after mean univariate responses were removed (see Mate-
rials and Methods). When specifically considering correlations
between frontal and parietal regions from each attentional net-
work, we found that decoded feature representations were more
coherent within networks than between networks. Beyond vali-
dating our approach, this finding provides novel evidence that
brain regions within attentional networks represent common
stimulus information.

The traditional view of frontoparietal regions is that they bias
and/or evaluate stimulus representations held in perceptual re-
gions (Kastner et al., 1999; Zanto et al., 2010; Liu et al., 2011;
Gazzaley and Nobre, 2012). However, our findings, along with
other recent evidence (Kuhl et al., 2013; Bettencourt and Xu,
2016; Ester et al., 2016; Bracci et al., 2017), challenge this view by
demonstrating active stimulus representations within frontopa-
rietal regions. This raises the critical question of how frontopari-
etal representations differ from those in perceptual regions. We
show that frontoparietal representations were sensitive to differ-
ent forms of attention than representations in visual cortical ar-

eas. The fact that frontoparietal representations were relatively
more sensitive to top-down factors helps to reconcile evidence
that frontoparietal regions represent stimulus information with
the putative role of these regions in top-down processing. Specif-
ically, our results suggest a transformation of information from
perceptual regions to frontoparietal regions that selectively rep-
resent and/or evaluate stimulus features. We next briefly consider
the pattern of results for each attentional manipulation.

Previous work has shown that visual distraction disrupts
working memory representations in visual cortex to a greater
degree than representations in frontoparietal regions (Miller et
al., 1996; Suzuki and Gottlieb, 2013; Woolgar et al., 2015; Betten-
court and Xu, 2016). Based on these findings, we predicted that
feature representations in the attentional networks would be rel-
atively less influenced by the across-experiment manipulation of
visual interruption. Indeed, the effect of interruption (Experi-
ment 1 vs Experiment 2) significantly differed across networks,
with feature representations in VisN most strongly “suffering”
from the interruption in bottom-up visual input (Fig. 3). Among
the attentional networks, VAN showed a significant effect of in-
terruption and there was a trend for DAN, whereas feature rep-
resentations in FPCN were not influenced by interruption. The
fact that VAN feature representations were influenced by inter-
ruption is consistent with the idea that VAN is involved in
bottom-up attentional capture (Corbetta and Shulman, 2002).

One reason why frontoparietal regions may actively represent
stimulus features is so that behaviorally relevant decisions can be
made. Indeed, several recent studies have found that stimulus
representations in frontoparietal regions are biased by task de-
mands (Swaminathan and Freedman, 2012; Kuhl et al., 2013;
Ester et al., 2016; Sarma et al., 2016; Bracci et al., 2017). We
specifically designed our stimuli to be multidimensional so that
we could test for flexible representation of individual features. As
with visual interruption, we found that the influence of behav-
ioral goals varied across networks (Fig. 4). In VAN, there was
significantly greater representation of goal-relevant than goal-
irrelevant features, with a similar trend in FPCN. At first pass, the
effect of goal relevance in VAN seems at odds with the putative
role of VAN in bottom-up attentional orienting (Corbetta and
Shulman, 2002). For example, univariate responses in VAN in-
crease for oddball stimuli or targets that appear at invalid loca-
tions (Bledowski et al., 2004; Kincade et al., 2005). However,
more recent evidence suggests that VAN plays a role in compar-
ing bottom-up input to top-down goals (Vossel et al., 2014; Grat-
ton et al., 2017). In fact, a recent meta-analysis found greater
VAN responses to task-relevant than task-irrelevant oddballs
(Kim, 2014), suggesting that VAN	s response to exogenous stim-
uli is moderated by top-down goals. Therefore, the present find-
ing of preferential decoding of goal-relevant features in VAN is
consistent with the view that VAN plays a role in orienting atten-
tion to task-relevant perceptual input.

VisN feature representations were unaffected by goals. Al-
though other studies have clearly found that top-down factors
can influence stimulus representations in early visual areas (Jehee
et al., 2011; Sprague and Serences, 2013; Ester et al., 2016), the
present findings suggest that frontoparietal regions can impose
their own attentional biases to favor goal-relevant features as
opposed to simply inheriting biases imposed in visual cortical
regions. Potentially, the lack of attentional bias in VisN in the
present study reflects the fact that we used stimuli (faces) that are
processed holistically. With different stimulus types and/or at-
tentional manipulations, it is likely easier to gate processing at
earlier stages.

Figure 6. Goal and dimension decoding. For goal decoding (teal), four different classifiers
were trained to dissociate each of the possible pairs of goals that appeared in a given block. The
goal pairs always consisted of one goal from each dimension (e.g., “Male?” vs “Grumpy?” goals).
For dimension decoding (lavender), the classifier training was identical to goal, but the classi-
fiers were tested on different goal pairs corresponding to the same dimensions. For example, a
classifier trained to dissociate Male/Grumpy goals would be tested on Female/Happy goals. All
networks showed reliable goal and dimension decoding. *p � 0.05, **p � 0.01, ***p �
0.001.
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A large body of previous research indicates that switching
between tasks (goals) is associated with increased univariate ac-
tivity in dorsal frontoparietal regions (Corbetta et al., 2008). Our
finding of greater univariate activation for switch versus stay tri-
als in FPCN and DAN, but not VAN or VisN, is consistent with
this literature. However, we are not aware of prior pattern-based
fMRI studies that have compared frontoparietal feature repre-
sentations across switch versus stay trials, so our analysis of task
switching effects on feature representations was necessarily more
exploratory. We found that the influence of task switching varied
across networks (Fig. 5) and, in particular, that switching effects
were more apparent in the attentional networks than VisN. Given
that task switching requires reconfiguration of top-down atten-
tion, this finding is consistent with the argument that feature
representations in attentional networks are relatively more sen-
sitive to top-down attention. Among the attentional networks,
FPCN showed greater feature decoding on stay than switch trials,
whereas DAN and VAN showed opposite trends. Although we
did not predict this pattern a priori, the tendency for feature
representations to be stronger on switch than stay trials (in DAN
and VAN) is reminiscent of recent evidence for greater decoding
of top-down goals on switch than stay trials (Waskom et al.,
2014). For FPCN, it is notable that switch trials were associated
with relatively greater univariate activity but relatively lower fea-
ture decoding, raising the possibility that these measures reflect
opposing processes. Given the exploratory nature of this analysis,
we believe this question requires additional investigation.

Although our primary focus was on frontoparietal represen-
tations of stimulus features, several prior studies have reported
frontoparietal representations of top-down goals (Waskom et al.,
2014; Hanson and Chrysikou, 2017; Loose et al., 2017; Waskom
and Wagner, 2017; Qiao et al., 2017) Consistent with these find-
ings, we observed significant goal decoding in all four networks.
One open question is whether the strength of goal representa-
tions is influenced by task switches. Although there is some evi-
dence that goal representations are relatively stronger on switch
trials than stay trials (Waskom et al., 2014), others have failed to
observe switch-related effects in task representations (Loose et
al., 2017). Like Loose et al. (2017), we did not observe a significant
difference in goal decoding as a function of task switching; how-
ever, we did find task-switching effects in the decoding of goal-
relevant features. Therefore, additional research will be needed to
better understand how and when task switching influences the
strength of top-down goals and/or goal-relevant feature repre-
sentations.

Given that classifiers trained on one pair of goals (e.g., “Male”
vs “Grumpy” goals) reliably transferred to nonidentical goals that
shared the same dimensions (e.g., “Female” vs “Happy” goals),
this suggests that goal representations reflected, at least in part,
information about or attention to the goal-relevant stimulus di-
mension (gender or affect). The fact that the “transfer cost” (goal
vs dimension decoding) was relatively greatest in VisN is consis-
tent with the idea that goal decoding in VisN was more closely
related to low-level properties of the goals (e.g., the visual word
form of the cue). Considering goal-decoding performance across
networks also provides a useful comparison point for the feature
decoding results. For example, comparing overall goal decoding
versus decoding of goal-relevant features across the three atten-
tional networks (a 2 � 3 ANOVA) revealed a highly significant
interaction (F(2,52) � 7.40, p � 0.001), reflecting a dissociation
between the networks that best represented goal-relevant features
(VAN) versus the goals themselves (FPCN/DAN). Therefore,
theoretical accounts of how these networks contribute to attention

will benefit from considering, not only how feature representations
vary across networks, but also the hierarchical organization of fea-
ture and goal representations (Koechlin and Summerfield, 2007;
Badre, 2008).

In summary, we show that resting-state networks implicated
in attentional control actively and coherently represent stimulus
features and that network-based feature representations can be
dissociated in terms of their sensitivity to various forms of atten-
tion (interruption of visual processing, goal relevance, and task
switching). Whereas feature representations in visual cortical ar-
eas are sensitive to low-level manipulations (visual interruption),
feature representations in attentional networks are sensitive to
higher-level manipulations (goal relevance and task switching).
At a broad level, these findings indicate that multiple networks
actively represent stimulus features, with the nature of these fea-
ture representations providing insight into each network’s func-
tional role.
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