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a  b  s  t  r  a  c  t

Successful  encoding  of  episodic  memories  is  thought  to depend  on  contributions  from  prefrontal  and
temporal  lobe  structures.  Neural  processes  that  contribute  to  successful  encoding  have  been  extensively
explored  through  univariate  analyses  of  neuroimaging  data  that  compare  mean  activity  levels  elicited
during  the  encoding  of  events  that  are  subsequently  remembered  vs.  those  subsequently  forgotten.  Here,
we applied  pattern  classification  to fMRI  data  to  assess  the  degree  to  which  distributed  patterns  of  activ-
ity within  prefrontal  and  temporal  lobe  structures  elicited  during  the  encoding  of  word–image  pairs
were  diagnostic  of  the  visual  category  (Face  or  Scene)  of  the  encoded  image.  We  then  assessed  whether
representation  of  category  information  was  predictive  of  subsequent  memory.  Classification  analyses
indicated  that  temporal  lobe  structures  contained  information  robustly  diagnostic  of  visual  category.
Information  in  prefrontal  cortex  was  less  diagnostic  of  visual  category,  but  was  nonetheless  associated
with  highly  reliable  classifier-based  evidence  for  category  representation.  Critically,  trials  associated  with
greater classifier-based  estimates  of  category  representation  in  temporal  and  prefrontal  regions  were

associated  with  a  higher  probability  of subsequent  remembering.  Finally,  consideration  of  trial-by-trial
variance  in  classifier-based  measures  of  category  representation  revealed  positive  correlations  between
prefrontal  and  temporal  lobe  representations,  with  the  strength  of  these  correlations  varying  as  a  function
of the  category  of  image  being  encoded.  Together,  these  results  indicate  that  multi-voxel  representations
of  encoded  information  can  provide  unique  insights  into  how  visual  experiences  are  transformed  into

episodic  memories.

. Introduction

For more than a decade, functional neuroimaging studies of
uman memory have considered how neural responses elicited
uring encoding relate to later memory outcomes. Most frequently,
his has been addressed through univariate analysis of functional

agnetic resonance imaging (fMRI) data, testing for individual vox-
ls (or clusters of voxels) that show greater mean activity during
he encoding of items that will be later remembered relative to
tems that will be forgotten—a subsequent memory effect (Brewer,
hao, Desmond, Glover, & Gabrieli, 1998; Wagner, Schacter, et al.,
998). Such studies have regularly implicated lateral prefrontal cor-
ex and the medial temporal lobe in successful memory formation

for reviews, see Blumenfeld & Ranganath, 2007; Kim, 2011; Paller

 Wagner, 2002; Spaniol et al., 2009). These observations are com-
lemented by neuropsychological investigations that demonstrate
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the necessity of prefrontal (Shimamura, 1995; Wheeler, Stuss, &
Tulving, 1995) and medial temporal lobe structures for episodic
memory (Cohen & Eichenbaum, 1994; Scoville & Milner, 1957;
Squire, 1992). Despite the obvious importance of these structures
for event memory, there remains considerable ambiguity regarding
the cognitive processes and neural mechanisms that are reflected
by greater fMRI activation during the encoding of subsequently
remembered items. One approach that offers the potential for new
insight into these processes is multi-voxel pattern analysis (MVPA).
By considering distributed patterns of neural activity, MVPA repre-
sents a highly sensitive method for fMRI data analysis and is ideally
suited for assessing the similarities or differences between neural
states across events (Norman, Polyn, Detre, & Haxby, 2006).

To date, only a handful of studies have applied MVPA to evalu-
ate distributed patterns of neural activity that give rise to episodic
encoding success (for review, see Rissman & Wagner, in press). In

one recent study, Watanabe et al. (2011) demonstrated that multi-
voxel patterns within the medial temporal lobe could be used to
classify individual stimuli as subsequently remembered vs. for-
gotten. Two additional studies used multivariate approaches to

dx.doi.org/10.1016/j.neuropsychologia.2011.09.002
http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
mailto:brice.kuhl@yale.edu
dx.doi.org/10.1016/j.neuropsychologia.2011.09.002
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onsider more subtle questions about how neural pattern simi-
arity across repetitions of a stimulus, or across different stimuli,
elate to later memory. In one study, Xue et al. (2010) found that
eural pattern similarity across repeated presentations of a stimu-

us was positively associated with later memory for that stimulus
c.f., Wagner, Maril, & Schacter, 2000). In another study, Jenkins
nd Ranganath (2010) found that when an encoding event was
ssociated with patterns of neural activity that were relatively dis-
imilar to neighboring events, that event was more likely to be later
ssociated with successful memory for its temporal context.

An alternative, and to our knowledge unexplored, application
f MVPA to the study of episodic encoding success is to consider
ow the neural representation of stimulus features during encod-

ng relates to later memory. That is, does the strength with which
n event is represented positively relate to later memory for that
vent? If so, are representations in some neural structures more
redictive of later memory success than representations in other
tructures? In the present study, we addressed these questions by
sing MVPA to (a) measure the neural representation of the visual
ategory of an encoded stimulus, and (b) assess how represen-
ational strength within prefrontal and temporal lobe structures
elates to subsequent memory outcomes.

We scanned subjects as they formed memories for arbitrary
ssociations between cue words and images of either well-known
eople (Faces) or well-known locations (Scenes). Using a subset
f the encoding data, we trained an MVPA classifier to discrimi-
ate fMRI activity patterns associated with Face vs. Scene trials.
his classifier was then used to index the relative manifesta-
ion of these category-selective activity patterns on each of the
emaining encoding trials, and this process was iteratively repeated
ntil all trials had been a part of both the training and testing
ets. By performing these pattern classification analyses on the
ata from each of a set of anatomically defined regions of inter-
st (ROIs) within prefrontal cortex and the temporal lobes, we
ssessed how classifier-based evidence for target information (Face
s. Scene representations) related to the likelihood that subjects
ould later recall the relevant Face/Scene image when probed with

ts associated cue word. We  predicted that the degree to which
ncoding trials were associated with category-specific activity pat-
erns would be an indicator of stimulus representational strength
t encoding, and hence a predictor of subsequent memory. We  also
ssessed whether this putative relationship between representa-
ional strength and subsequent memory differed across prefrontal
nd temporal lobe structures.

On the one hand, the representation of visual categories, such
s Faces and Scenes, has been most clearly established within tem-
oral lobe structures (Epstein & Kanwisher, 1998; Haxby et al.,
001; Kanwisher, McDermott, & Chun, 1997; Puce, Allison, Asgari,
ore, & McCarthy, 1996; Weiner & Grill-Spector, 2010), and there is
ome evidence for category-selective subsequent memory effects
n temporal lobe areas (e.g., Kirchhoff, Wagner, Maril, & Stern, 2000;
rince, Dennis, & Cabeza, 2009). On the other hand, prefrontal cor-
ex is regularly implicated in successful episodic encoding and,
hile visual category representation in prefrontal cortex has not

een well defined through fMRI studies, recordings from individ-
al neurons in monkeys have provided compelling evidence for
ategory-level representations of visual stimuli in lateral prefrontal
ortex (e.g., Freedman, Riesenhuber, Poggio, & Miller, 2001). Thus,
hile we predicted that category representation would be most

obust within temporal lobe structures, we also anticipated that
ategory representation would be observed in prefrontal cortex
nd closely tied to subsequent memory outcomes. Moreover, con-

istent with the view that prefrontal cortex operates upon the
roducts of—and potentially influences—posterior representations
e.g., Miller & Cohen, 2001), we asked whether, on a trial-by-trial
asis, the strength of representations in temporal lobe structures
gia 50 (2012) 458– 469 459

was  correlated with the strength of representations within pre-
frontal structures.

2. Methods

2.1. Subjects

Eighteen subjects (10 female) participated in the study. All were right-handed
native English speakers between the ages of 18 and 27 yrs. Subjects received $20/h
for  their participation. Informed consent was obtained according to procedures
approved by the Stanford Institutional Review Board.

2.2. Materials and procedure

The experiment consisted of alternating blocks of encoding and retrieval, all
conducted during fMRI scanning. During encoding, subjects viewed nouns (cues;
e.g., ‘flag’ ‘couch’) presented above grayscale photographs of well-known people
(Faces; e.g., ‘Tom Cruise’ or ‘Julia Roberts’) or well-known locations (Scenes; e.g.,
‘Eiffel Tower’ or ‘Grand Canyon’). Nouns were drawn from the Medical Research
Council Psycholinguistic Database (http://www.psy.uwa.edu.au/MRCDataBase/
uwa mrc.htm) and ranged in length from four to eight letters (M = 5.4). All nouns
had a Kucera–Francis written frequency of at least five (M = 20.7) and a concreteness
rating of at least 500 (M = 600). Faces and Scenes were grayscale images, 225 × 225
pixels, with a resolution of 150 pixels/in. Faces included hair and varied in emotional
expression, but were selected and cropped such that background objects or scenes
were not visible. Scenes were selected and cropped such that they did not contain
any faces or prominent people. Beneath each image was a label providing a specific
name for that image (e.g., ‘Tom Cruise,’ or ‘Eiffel Tower’). Half of all Faces were male;
half were female. Half of all Scenes were manmade structures (e.g., ‘Eiffel Tower’);
half  were natural landscapes (e.g., ‘Grand Canyon’).

Across seven blocks, a total of 72 cue–Face pairs and 72 cue–Scene pairs were
studied (an additional 8 pairs were generated as fillers). For each image category
(Faces and Scenes), 48 of the 72 pairs consisted of novel cues paired with novel
images; the remaining 24 pairs consisted of repeated cues paired with novel images.
In  other words, of the 48 novel pairs, half of the cues were later paired with a second
image (always from the opposite image category) to create overlapping pairs. The
overlapping pairs were intended to elicit interference during retrieval—a topic that
is  not the focus of the present study but is described elsewhere (Kuhl, Rissman,
Chun, & Wagner, 2011). The novel pairs were distributed across blocks 1–6; the
overlapping pairs were distributed across blocks 2–7. Given the aims of the present
study, overlapping pairs were excluded from all of the analyses reported here except
for  classification of image sub-category, as described below.

Each encoding trial lasted 4 s and was  followed by an 8 s inter-trial baseline
period. The baseline period began with the presentation of a fixation cross for
800  ms,  followed by six randomly left/right-oriented arrows (800 ms  each). Each
arrow was followed by a 400 ms  fixation cross and subjects were instructed to indi-
cate  the left/right orientation of the arrow via a button box held in their right hand.
The arrow task was  included in order to disrupt or eliminate continued encoding
of pairs during the baseline period—which would otherwise be likely given sub-
jects’ knowledge of the forthcoming retrieval phase—and to therefore allow elicited
hemodynamic responses to subside before the onset of the next trial. Subjects did
not  make any response during the encoding trial itself and were not provided with
specific instructions on how to form the cue–image associations; however, subjects
were made aware of how their memory would be tested before beginning any of
the  encoding blocks.

During the retrieval blocks, subjects were presented with cues that had appeared
in  the immediately preceding encoding block and attempted to retrieve the cor-
responding image. For cues that were to be paired with a second image (the
overlapping pairs), this re-pairing did not occur until the ensuing encoding block;
thus, each of the 48 novel Face pairs and each of the 48 novel Scene pairs was
presented in an encoding round and probed during a retrieval round before the over-
lapping pair was encoded. Critically, all of the retrieval data reported in the present
study concern performance for the novel pairs.

Each retrieval trial lasted 5 s and consisted of a single cue presented above a
square equal in size to the Face/Scene images. The interior of the square was black,
matching the background screen color, thus giving the impression of an empty box.
The  outline of the square was  white for the first 4 s of the trial, changing to red for
the last 1 s to indicate that the trial was  about to end. Subjects were instructed to
covertly recall the target image and to make one of five responses using a button
in  their right hand to indicate their retrieval success: (1) “face-specific” indicated
that they were able to recall the specific image that was paired with the cue, and
that  it was a Face; (2) “face-general” indicated that they were not able to recall
the specific image paired with the cue, but that they had a general memory of the
image being a Face; likewise for (3) “scene-specific,” and (4) “scene-general,” and
(5)  “Don’t Know” indicated that the subject could not remember anything about

the  target image. Subjects could respond at any point during the 5-s duration of
the  trial and no emphasis was placed on responding quickly. Retrieval trials were
followed by a 7-s baseline period during which a fixation cross was presented. No
response was  required during the baseline period. A ‘passive’ baseline was used
during retrieval—as opposed to the active baseline at encoding—because subjects

http://www.psy.uwa.edu.au/MRCDataBase/uwa_mrc.htm
http://www.psy.uwa.edu.au/MRCDataBase/uwa_mrc.htm
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and significant following Bonferroni correction; Fig. 2A). Classi-
60 B.A. Kuhl et al. / Neurops

id  not have an obvious incentive to continue processing stimuli in between trials,
hereby reducing the need to distract subjects during this period.

All  cue–image pairings were randomized for each subject. Each encoding and
etrieval block contained an equal number of Face and Scene trials, arranged
n pseudo-random order to control for average serial position of Faces and
cenes.

Following the last retrieval block, subjects completed a face/scene localizer task
uring which novel, non-famous faces and scenes were presented, one at a time, and
ubjects were instructed to make a button response whenever an image repeated
n  consecutive trials. The scan consisted of 153 volumes (5 min, 6 s) and contained

 blocks of faces and 8 blocks of scenes (7 images/block).

.3. fMRI methods

fMRI scanning was conducted at the Lucas Center at Stanford University
n  a 3.0 T GE Signa MRI system (GE Medical Systems). Functional images were
btained using a T2*-weighted 2D gradient echo spiral-in/out pulse sequence;
epetition time (TR) = 2 s; echo time (TE) = 30 ms;  flip angle = 75◦; 30 slices,
.4  mm  × 3.4 mm × 4 mm;  axial oblique sequential acquisition. The seven encoding
locks consisted of 940 total volumes. Image preprocessing and data analy-
es  were performed using SPM5 (Wellcome Department of Cognitive Neurology,
ondon).

Functional data were corrected for slice timing and head motion. Subjects’
tructural images were coregistered to functional images and segmented into gray
atter, white matter, and cerebrospinal fluid. Gray matter images were stripped

f  remaining skull and normalized to the Montreal Neurological Institute (MNI)
ray  matter template. Parameters generated during normalization of the gray mat-
er  images were applied to the non-segmented structural and functional images.
mages were resampled to 3 mm cubic voxels and smoothed with an 8 mm FWHM
aussian kernel.

Univariate data analyses were conducted under the assumptions of the general
inear model (GLM). Individual trials were modeled using a canonical hemodynamic
esponse function and its first order temporal derivative. Encoding data were mod-
led  with scan session (block) treated as a covariate. Linear contrasts were applied
or each subject to obtain subject-specific estimates of effects of interest. These
stimates were then entered into a second-level, random-effect analysis for which
ne-sample t tests were applied against a contrast value of zero for each voxel; a five-
oxel extent threshold was applied. Contrast maps were overlaid on a normalized
anonical brain using MRIcron (http://www.sph.sc.edu/comd/rorden/mricron/). To
est for univariate effects of subsequent memory, a GLM was constructed that con-
isted of four regressors representing two levels of image category (Faces vs. Scenes)
nd two levels of subsequent memory (subsequently Remembered vs. subsequently
orgotten items). Only novel pairs were included in this model. A fifth regressor
epresented filler trials and overlapping pairs.

.4. Multi-voxel pattern analysis methods

Pattern classification analyses were conducted using the Princeton Multi-Voxel
attern Analysis Toolbox (http://www.pni.princeton.edu/mvpa) and custom code
mplemented in MATLAB (The MathWorks, Natick, MA). All fMRI data used for
lassification analyses were pre-processed in the same way  that data for the univari-
te analyses were pre-processed (including normalization and spatial smoothing).
dditionally, data used for pattern classification analyses were high-pass filtered

0.01 Hz), detrended, and z-scored (first across all trials within each run, then across
uns but only for those trials used for classification). Classifier analyses were based
n  penalized logistic regression using L2-norm regularization and a penalty param-
ter of 100. All classification analyses used a cross-validation approach where all but
wo  trials—one from each condition—comprised the training set and the two left-
ut  trials comprised the testing set. Training and testing were repeated iteratively
o that all trials were part of the testing set for one iteration.

All of the classifications in the present study were binary. The main classifica-
ion analysis corresponded to classification of Faces vs. Scenes (image category);
econdary analyses were conducted for classification of Male vs. Female Faces
Face sub-category) and for classification of Manmade vs. Natural Scenes (Scene
ub-category). For classification of image category, only novel pairs were included.
verlapping pairs were excluded because of the likelihood that subsequent mem-
ry  effects might differ for novel vs. overlapping pairs. For classification of image
ub-categories, novel and overlapping pairs were combined because (a) subse-
uent memory analyses were not considered with respect to classification of image
ub-category, and (b) classification of image sub-category was  a very subtle dis-
inction that benefitted from the additional power. Notably, for classification of
oth image category and sub-category, the cells were balanced; that is, there were
n  equal number of Face and Scene trials for the image category classification, an
qual number of Male and Female trials for the Face sub-category classification,
nd  an equal number of Manmade and Natural trials for the Scene sub-category

lassification.

For  each trial in the testing set, the logistic regression classifier generated a
calar probability estimate that the trial corresponded to category A vs. category B
by  construction, these probability estimates summed to unity). On each trial, the
lassifier’s ‘guess’ corresponded to the category with the higher probability and was
gia 50 (2012) 458– 469

coded as ‘correct’ or ‘incorrect’ based on whether the guess matched the actual cat-
egory for that trial. Classification accuracy thus represented the percentage of trials
that  the classifier correctly categorized. Additionally, we also computed mean clas-
sifier evidence––that is, the mean of the scalar probability estimate that the classifier
assigned to the relevant category for each trial. This continuous measure of classifier
performance capitalizes on the fact that the classifier’s predictions were probabilis-
tic  rather than binary, and potentially provides a more sensitive index of category
discriminability than classification accuracy. All classification analyses were per-
formed on a trial-by-trial basis, as opposed to a volume-by-volume basis. Trial-level
classifier data were obtained by averaging temporally contiguous volumes that cor-
responded to the expected peak of the hemodynamic response function (i.e., TRs
3–4,  corresponding to 4–8 s post stimulus onset).

Anatomical ROIs were generated using the Anatomical Automatic Labeling
(AAL) atlas (http://www.cyceron.fr/web/aal anatomical automatic labeling.html),
which provides anatomical masks in MNI  space. Three temporal and five pre-
frontal ROIs were generated by summing the left and right masks corresponding
to  regions of a priori interest (Fig. 1A). Any voxels that were part of more than
one mask, according to the AAL atlas, were excluded so that each mask con-
tained an independent set of voxels. The three temporal ROIs corresponded to the
AAL masks for fusiform gyrus (FG; 1686 voxels), parahippocampal gyrus (PHG;
659 voxels), and hippocampus (HIPP; 633 voxels). For the prefrontal ROIs, an
ROI representing inferior frontal gyrus (IFG; 3398 voxels) was generated by sum-
ming the AAL masks corresponding to pars orbitalis, pars triangularis, and pars
opercularis (‘Frontal Inf Orb’ + ‘Frontal Inf Tri’ + ‘Frontal Inf Oper’). ROIs represent-
ing  middle frontal gyrus (MFG; 3052 voxels) and superior frontal gyrus (SFG;
2314 voxels) corresponded to the AAL masks ‘Frontal Mid’ and ‘Frontal Sup,’
respectively. An ROI representing medial prefrontal cortex (mPFC; 2980 vox-
els)  was  generated by summing the AAL masks corresponding to anterior
cingulate cortex, medial superior frontal gyrus, and medial orbitofrontal gyrus
(‘Cingulum Ant’ + ‘Frontal Sup Medial’ + ‘Frontal Med  Orb’). An ROI representing
orbitofrontal cortex (OFC; 1198 voxels) was  generated by summing the AAL
masks corresponding to the orbital extent of the middle and superior frontal gyri
(‘Frontal Sup Orb’ + ‘Frontal Mid  Orb’). Our use of anatomical masks was intended
to characterize information representation within specific anatomical structures;
no  additional feature selection was applied.

To visualize the contribution of individual voxels to classifier performance, an
importance map  was generated based on a classifier applied to a meta-ROI that
was  comprised the sum of the three temporal and five prefrontal ROIs. To generate
the  importance map, the classifier-assigned weight for each voxel—which could be
positive or negative, depending on a voxel’s relation to category A vs. B trials—was
multiplied by its mean activity level for category A trials. Voxels for which the weight
and mean activity were both positive were assigned positive importance values;
voxels for which the weight and mean activity were both negative were assigned
negative importance values; all other cases were assigned importance values of zero
(McDuff, Frankel, & Norman, 2009; Rissman, Greely, & Wagner, 2010). Importance
maps were averaged across classifier iterations for each subject and then across
subjects to generate a single group-level importance map.

3. Results

3.1. Behavioral results

Subjects were able to recall the target image category (either
“specific” or “general” memory for the image) on the majority of
retrieval trials (M = 79.2%); hereinafter ‘Remembered’ items. ‘For-
gotten’ items corresponded to trials on which subjects responded
“Don’t Know” (M = 13.2%) or responded with the incorrect category
(M = 5.7%). Trials for which subjects failed to respond (M = 2.0%)
were excluded from subsequent memory analyses. The percent-
age of items Remembered did not differ for Face vs. Scene trials
(M = 80.1% vs. M = 78.2%, respectively, t(17) = 1.14, p = .27).

3.2. Category information during encoding

3.2.1. Classification of image category
Across subjects, mean classification accuracy for the category of

the encoded image (Face vs. Scene) was  above chance (50%) in each
of the temporal and prefrontal ROIs (all t(17)s > 4.40, all ps < .001
fication based on temporal ROIs (averaged across HIPP, FG, and
PHG) yielded markedly higher accuracy than classification based
on prefrontal ROIs (averaged across IFG, MFG, SFG, mPFC, and OFC)
(M = 91.1% vs. M = 69.6%, respectively, t(17) = 19.77, p < .001). It is of

http://www.sph.sc.edu/comd/rorden/mricron/
http://www.pni.princeton.edu/mvpa
http://www.cyceron.fr/web/aal__anatomical_automatic_labeling.html
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ig. 1. (A) ROI specification for temporal (left) and prefrontal (right) regions. (B) I
rbitrarily thresholded at .01. (C) Univariate contrast of Face vs. Scene encoding tria
ote that this difference was in spite of the fact that the tempo-
al ROIs were generally much smaller (number of voxels) than the
refrontal ROIs. To visualize the distribution of voxels that posi-
ively contributed to Face vs. Scene classification we  ran a separate

ig. 2. (A) Classification accuracy for image category (Face vs. Scene) across tempo-
al and prefrontal ROIs. (B) Classification accuracy for image sub-category (Male vs.
emale for Face trials; Manmade vs. Natural for Scene trials) across temporal and
refrontal ROIs. Error bars indicate standard error of the mean.
ance map  showing voxels that positively contributed to Face vs. Scene encoding;

classification analysis using a single meta-ROI that combined each
of the eight temporal and prefrontal ROIs (mean accuracy = 94.7%)
and generated an importance map  from this classification. As can be
seen in Fig. 1B, within prefrontal cortex, voxels that positively con-
tributed to Face classification were most prevalent in IFG and mPFC,
and, to a lesser extent, in SFG and OFC. Voxels that positively con-
tributed to Scene classification were more prevalent in MFG and, to
a lesser extent in SFG and anterior portions of IFG. In the temporal
lobes, voxels that positively contributed to Face classification were
evident in posterior and anterior FG, as well as anterior HIPP. Vox-
els that positively contributed to Scene classification were evident
in posterior PHG, posterior FG, and posterior HIPP.

3.2.2. Classification of image sub-categories
We next tested for evidence of sub-category representation in

prefrontal and temporal ROIs (Male vs. Female for Faces; Man-
made vs. Natural for Scenes). Collapsing across Face and Scene
sub-categories, classification accuracy was significantly above
chance for temporal ROIs (t(17) = 3.51, p < .005) and prefrontal
ROIs (t(17) = 3.51, p < .005) (Fig. 2B). However, sub-category clas-
sification differed robustly across temporal ROIs (F(2,34) = 24.73,
p < .001), with accuracy markedly higher for FG (M = 59.6%) than
PHG (M = 53.1%) or HIPP (49.9%). Accuracy also differed across pre-
frontal ROIs (F(4,68) = 4.32, p < .005), with accuracy tending to be
higher in lateral prefrontal ROIs (IFG, MFG, SFG) than mPFC or
OFC. For the temporal ROIs, an interaction was  observed between
ROI and image category (F(2,34) = 6.36, p < .01), reflecting greater

classification of Face sub-category in HIPP and PHG but better clas-
sification of Scene sub-category in FG (Table 1). For the prefrontal
ROIs, there was  no interaction between ROI  and image category
(F < 1; Table 1).
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Table  1
Classification accuracy for image sub-categories: Faces (Male vs. Female); Scenes
(Manmade vs. Natural). SEM, standard error of the mean.

Temporal Prefrontal

HIPP FG PHG IFG MFG SFG mPFC OFC

Faces
Mean 51.7% 56.9% 54.3% 54.7% 55.1% 54.0% 53.5% 50.2%
SEM  2.6% 2.4% 2.0% 1.7% 1.9% 1.5% 1.8% 1.9%
Scenes
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Mean 48.1% 62.3% 51.9% 51.5% 55.2% 53.2% 50.6% 49.5%
SEM 2.1% 1.3% 1.8% 1.3% 1.8% 1.6% 1.5% 1.5%

.3. Relationship between category information at encoding and
ubsequent memory

.3.1. Trial-by-trial variability
To assess the relationship between trial-by-trial variability in

he representation of category information during encoding and
ubsequent memory, we separated all encoding trials according
o whether the target image was later Remembered vs. Forgotten.
lassification accuracy and classifier evidence were then consid-
red for Remembered vs. Forgotten items. This was  done separately
or Face and Scene trials, so that image category was  not con-
ounded with subsequent memory, but all data reported below
ere averaged across image category.

To first address the relationship between classification accuracy
t encoding and subsequent memory, two ANOVAs were gener-
ted: one for the temporal ROIs and one for the prefrontal ROIs.
ach ANOVA contained two factors: ROI and subsequent mem-
ry. For the ANOVA on the temporal ROIs, the subsequent memory
ffect was not significant (F(1,17) = 1.37, p = .26; Fig. 3A), nor did
ubsequent memory interact with ROI (F < 1). Thus, there was no
vidence from the temporal ROIs that subsequently Remembered
tems were better classified as Faces vs. Scenes, relative to subse-

uently Forgotten items. Rather, both mnemonic classes of items
ere classified with extremely high accuracy; this was  particularly

vident for FG, where subsequently Remembered and Forgotten

ig. 3. (A) Difference in classification accuracy for items subsequently Remembered
s.  subsequently Forgotten across temporal and prefrontal ROIs. (B) Difference in
ontinuous measure of classifier evidence for items subsequently Remembered vs.
ubsequently Forgotten across temporal and prefrontal ROIs. Error bars indicate
tandard error of the mean.
gia 50 (2012) 458– 469

items were each classified with near-perfect accuracy (M = 98.5%
and M = 98.9%, respectively).

For the ANOVA on the prefrontal ROIs, the main effect of
subsequent memory was significant, reflecting greater classifica-
tion accuracy for Remembered vs. Forgotten items (F(1,17) = 8.13,
p < .05; Fig. 3A). This subsequent memory effect did not interact
with ROI (F < 1). Thus, in contrast to classification accuracy based
on temporal ROIs, Face vs. Scene classification accuracy based on
the prefrontal ROIs was  significantly higher for items that would
later be Remembered. A separate ANOVA indicated that the differ-
ence in the subsequent memory effect for prefrontal vs. temporal
ROIs was marginally significant (F(1,17) = 4.21, p < .06).

The preceding analyses relating classification accuracy to subse-
quent memory outcomes point to a potential dissociation in terms
of how diagnostic the distributed encoding activity within pre-
frontal vs. temporal cortex is of memory outcomes. On the one
hand, these data suggest that category information is highly dis-
criminable in ventral temporal regions, with classification accuracy
approaching ceiling levels (Fig. 2A), whereas the representation
of category information in prefrontal cortex is more variable and,
critically, predictive of memory outcomes. On the other hand, it
is important to note that our measure of classification accuracy
only reflects whether neural evidence on a given trial favored the
target image category or not, but does not capture potential gra-
dations in the strength of evidence. It is possible that Forgotten
items were associated with weaker temporal lobe representations
than Remembered items, but that these weaker representations
were nevertheless sufficient to allow for very high classification
accuracy.

To address whether more subtle differences in representa-
tional strength in temporal regions were related to memory
outcomes, we replicated the analyses described above—generating
one ANOVA for temporal ROIs and one for prefrontal ROIs—except
that, instead of considering the binary measure of classification
accuracy, we now considered the continuous measure of classi-
fier evidence. Critically, for the ANOVA on the temporal ROIs, we
now observed a significant main effect of subsequent memory,
reflecting greater evidence for Remembered vs. Forgotten items
(F(1,17) = 5.84, p < .05; Fig. 3B). This effect did not interact with ROI
(F < 1). For the ANOVA on the prefrontal ROIs, the effects were con-
sistent with those based on classification accuracy: there was  a
main effect of subsequent memory (F(1,17) = 6.76, p < .05; Fig. 3B)
and this effect did not interact with ROI (F < 1). While the effect
was, numerically, larger for prefrontal than temporal ROIs, a sep-
arate ANOVA indicated that the difference was not significant
(F(1,17) = 1.73, p = .21). Thus, these data indicate that the continu-
ous measure of classifier evidence captured differences in category
information in temporal regions that were not reflected in the cat-
egorical measure of classification accuracy (the latter null result
may  have partially stemmed from a restricted range due to ceiling
effects).

3.3.2. Individual differences
In the preceding section, we  presented evidence that trial-

by-trial differences in classifier-based measures of category
information were related to subsequent memory outcomes. We
next asked whether cross-subject variability in the strength of
category information at encoding was related to individual differ-
ences in retrieval success. Specifically, we  tested for a correlation
between mean classifier evidence based on prefrontal and tem-
poral ROIs for the Face vs. Scene discrimination at encoding and

the percentage of Remembered items for each subject. This was
done separately for Face trials (i.e., correlating mean classifier
evidence across Face trials with mean retrieval success for Face
trials) and Scene trials.
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ig. 4. Across-subject correlations showing relationship between mean classifier ev
or  prefrontal ROIs (top row; classifier evidence averaged across the five prefront
emporal ROIs) and for Face trials (left column) and Scene trials (right column).

Using classifier evidence from temporal ROIs, we observed a
ositive, but non-significant relationship between classifier evi-
ence at encoding and subsequent memory for Faces and Scenes
ps > .1; Fig. 4). For classifier evidence from the prefrontal ROIs,
he correlations for Face and Scene trials were each significant
ps < .05; Fig. 4). These correlations reflected a positive relationship
etween the discriminability of Faces vs. Scenes at encoding and

ater retrieval success. While statistical significance was only con-
idered for data averaged across prefrontal ROIs vs. data averaged
cross temporal ROIs (to avoid excessive hypothesis testing), corre-
ation coefficients for each ROI within the temporal and prefrontal
roups are reported in Table 2. It also is worth noting that while
he correlations were significant across the prefrontal ROIs, but not
he temporal ROIs, the former correlations were not significantly
reater than the latter (William’s test: ts < 1.4; ps > .20).

.4. Correlations between temporal and prefrontal category

nformation

The data presented thus far indicate that, during encoding,
ategory information was robustly represented in distributed

able 2
orrelation coefficients (r) representing across-subject relationship between classifier evid

ater  Remembered. Results are reported separately for Face trials (i.e., the correlation be
nd  Scene trials. For descriptive purposes, correlation coefficients are reported for each te
sed  data averaged across temporal ROIs or averaged across prefrontal ROIs.

Temporal Prefron

HIPP FG PHG Avg. IFG 

Face
r .36 .27 .43 .39 .33 

p –  – – .11 – 

Scene
r .30  .33 .37 .35 .44 

p  – – – .15 – 
e at encoding and mean success rate at retrieval. Correlations are separately shown
s) and temporal ROIs (bottom row; classifier evidence averaged across the three

patterns of activity in both temporal and prefrontal structures.
Although these representations were clearly more robust in tem-
poral regions, they were predictive of memory outcomes in both
prefrontal and temporal regions. While it is possible that prefrontal
and temporal regions represent independent forms of information,
extant evidence suggests that these regions interact, with percep-
tual representations feeding forward from temporal to prefrontal
regions (e.g., Simons & Spiers, 2003) and prefrontal regions influ-
encing temporal representations via top-down control (e.g., Miller
& Cohen, 2001; Miller, Vytlacil, Fegen, Pradhan, & D’Esposito, 2010;
Tomita, Ohbayashi, Nakahara, Hasegawa, & Miyashita, 1999; Zanto,
Rubens, Thangavel, & Gazzaley, 2011). To the extent that such inter-
actions occur, trial-by-trial variability in the strength of category
information within temporal regions should be correlated with
variability in the strength of category information within prefrontal
cortex.

To test the hypothesis that category information within

temporal regions is correlated with such information within pre-
frontal cortex, we used the continuous measure of classifier
evidence, generating a within-subject correlation coefficient for
each pairing of temporal vs. prefrontal ROIs. Correlation coeffi-

ence for Face vs. Scene discrimination during encoding and the percentage of items
tween classifier evidence from Face trials and subsequent memory for Face trials)
mporal and prefrontal ROI, but p values are only reported for the correlations that

tal

MFG  SFG mPFC OFC Avg.

.54 .62 .47 .35 .58
– – – – .01

.57 .59 .41 .33 .57
– – – – .01
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Fig. 5. Correlation matrices for Face and Scene encoding trials showing the mean
strength of correlations between trial-level classifier evidence in individual pre-
frontal and temporal ROIs. Correlation coefficients were transformed to Fisher’s z
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For the prefrontal ROIs, correlations did not differ among
rior to averaging.

ients were separately generated for Face and Scene trials and
ransformed to z-scores (Fischer’s z). The z-scores were then con-
idered across subjects and across prefrontal–temporal pairings
or group-level statistical analyses. An ANOVA was  generated with
hree levels: image category (Face vs. Scene trials), prefrontal
OI (IFG, MFG, SFG, mPFC, OFC), and temporal ROI (HIPP, FG,
HG).

Collapsing across image category, individual t tests confirmed
hat each of the prefrontal–temporal correlations (15 pairings
otal) was significantly greater than 0 (ts > 5.11, ps < .001, significant
ollowing Bonferroni correction), reflecting a general positive rela-
ionship between evidence within temporal and prefrontal ROIs
Fig. 5). The main effect of image category was not significant (F < 1),
ndicating that the correlations between prefrontal and temporal
OIs were not, overall, different for Face vs. Scene trials. The main
ffect of prefrontal ROI was significant (F(4,68) = 6.84, p < .001),
ith MFG  displaying the strongest correlations with temporal
OIs and OFC displaying the weakest. The main effect of tem-
oral ROI was marginally significant (F(2,34) = 2.75, p = .08), with
IPP displaying somewhat stronger correlations with prefrontal
OIs relative to FG and PHG. Additionally, the interaction between
refrontal ROI and temporal ROI was significant (F(8,136) = 4.36,

 < .001), indicating that the strength of correlations across tem-
oral ROIs varied as a function of the prefrontal ROI with which

t was correlated. Moreover, an interaction between image cate-
ory and prefrontal ROI (F(4,68) = 2.93, p < .05) indicated that the
trength of correlations with temporal structures differed across
refrontal ROIs as a function of the type of image being encoded.
or example, during Scene encoding, MFG  displayed the strongest
orrelations with temporal ROIs, whereas during Face encoding
PFC displayed the strongest correlations with temporal ROIs. The

nteraction between image category and temporal ROI was not
ignificant (F(2,34) = 2.51, p = .10), nor was the three-way interac-
ion between image category, prefrontal ROI, and temporal ROI
F(8,136) = 1.63, p = .12). Individual ANOVAs with factors of tem-
oral ROI and image category were also applied to each prefrontal
OI to test whether any of the prefrontal ROIs displayed correla-
ions that varied across temporal ROIs as a function of the category
f image being encoded. For OFC, a robust interaction between
mage category and temporal ROI was observed (F(2,34) = 7.22,

 < .005). This interaction reflected stronger correlations between
FC and HIPP/PHG during Scene encoding, relative to Face encod-

ng, and stronger correlations between OFC and FG during Face
ncoding, relative to Scene encoding. No other prefrontal ROI dis-

layed a significant interaction between temporal ROI and image
ategory (all ps > .23).
gia 50 (2012) 458– 469

3.5. Univariate analyses of subsequent memory effects

To assess the relationship between the preceding MVPA and
more typical univariate subsequent memory analyses, we con-
ducted two  univariate analyses on the present data. First, we
contrasted encoding trials that were subsequently Remembered
vs. those subsequently Forgotten (collapsing across image cate-
gory). At a standard threshold (p < .001, 5-voxel extent) we did not
observe any clusters positively associated with subsequent mem-
ory that overlapped with the prefrontal or temporal ROIs. At a very
liberal threshold (p < .01, 5-voxel extent) the only clusters that over-
lapped with the prefrontal ROIs were in bilateral IFG; no clusters
overlapped with the temporal ROIs. To more closely parallel the
subsequent memory analysis applied to the classifier data, we  also
tested for an interaction between the subsequent memory effects
for Faces and Scenes [(Face Remembered > Face Forgotten) > (Scene
Remembered > Scene Forgotten)]. At a standard threshold (p < .001,
5-voxel extent) there were no clusters, either from the positive or
negative tail of the contrast that overlapped with the prefrontal or
temporal ROIs. At a very liberal threshold (p < .01, 5-voxel extent)
there were no clusters from the positive tail of the contrast that
overlapped with the prefrontal or temporal ROIs; for the negative
tail, a few small clusters of activation, bilaterally, overlapped with
the PHG and FG ROIs.

3.6. Pattern similarity analysis

To complement the main classification analyses reported above,
we also conducted a pattern similarity analysis (e.g., Kriegeskorte,
Mur, & Bandettini, 2008) for which the pattern of activity elicited
during each encoding trial was correlated with the pattern of activ-
ity elicited on every other encoding trial. This analysis allowed us
to consider how correlations varied across trials as a function of
subsequent memory (Remembered vs. Forgotten) and visual cate-
gory (within-category vs. between-category). This was separately
performed for each of the temporal and prefrontal ROIs. All corre-
lations were transformed to z-scores and then averaged according
to subsequent memory status and visual category. Subjects with
five or fewer trials in one or more of the four relevant bins (Face-
Remember, Face-Forget, Scene-Remember, Scene-Forget) were
excluded to reduce the influence of small samples on the corre-
lations.

Consistent with the general success of our pattern classifier in
discriminating Face vs. Scene trials, within-category correlations
(e.g., Face trials correlated with other Face trials) were significantly
higher than between-category correlations, both in prefrontal
(t(10) = 4.99, p < .001) and temporal regions (t(10) = 10.74, p < .001)
(Fig. 6). Notably, for the temporal ROIs, within-category cor-
relations were greater among Remembered items than among
Forgotten items (t(10) = 2.89, p < .05). Indeed, Forgotten items were
more positively correlated with within-category Remembered
items than other within-category Forgotten items (t(10) = 3.10,
p < .05). Between-category correlations were numerically, but
not significantly more negative for Remembered items (e.g.,
Face-Remember to Scene-Remember) than Forgotten items (e.g.,
Face-Forget to Scene-Forget) (t(10) = −1.03, p = .32). There was,
however, a significant interaction between subsequent memory
group (Remembered–Remembered vs. Forgotten–Forgotten) and
category (within vs. between) (F(1,10) = 7.98, p < .05), reflecting the
tendency for Remembered items to be associated with greater
within-category similarity and greater between-category dissim-
ilarity than Forgotten items.
Remembered items and Forgotten items either within categories
(p = .58) or between categories (p = .83). The correlations in pre-
frontal ROIs were, however, much weaker than the temporal ROIs
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Fig. 6. Pattern similarity analysis. Correlation coefficients were computed for all
pairs of encoding trials, reflecting the similarity of the neural response across
voxels for each pair of trials. The resulting r values were z-transformed and aver-
aged  according to whether they represented within-category correlations (e.g.,
Face–Face), between-category correlations (Face–Scene) and according to subse-
quent memory status (e.g., Remembered–Remembered). The similarity analysis was
separately performed for each prefrontal and temporal ROI and data were then aver-
aged across the three temporal ROIs and the five prefrontal ROIs. Within-category
similarity was  greater than between-category similarity for both temporal and pre-
frontal regions. For the temporal regions, within-category similarity was  greater
among Remembered trials (Rem.–Rem.) than among Forgotten trials (Forg.–Forg.).
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dditionally, Forgotten items were more similar to within-category Remembered
tems (Rem.–Forg.) than to other within-category Forgotten items (Forg.–Forg.).
rror bars represent standard error of the mean. *p < .05.

see Fig. 6), likely reflecting a lower proportion of category-selective
oxels in the prefrontal ROIs.

. Discussion

The present study yielded three main findings. First, during
ncoding of words paired with images of Faces or Scenes, MVPA
evealed that information highly diagnostic of visual category was
resent in distributed patterns of activity in temporal and pre-
rontal structures. Second, representation of category information
uring encoding was positively associated with subsequent mem-
ry outcomes. Notably, in prefrontal cortex, both trial-by-trial
ariation and individual differences in classifier-based measures
f category information were predictive of subsequent memory.
hird, classifier-based measures of category information within
emporal cortex were correlated with prefrontal information, with
he strength of these correlations varying across specific temporal
nd prefrontal pairings and as a function of the category of encoded
aterial. Below, we first consider some basic issues regarding the

se of pattern classification to infer representational strength dur-
ng episodic encoding and then consider the specific implications
nd significance of each of our main findings.

.1. Representational strength at encoding as measured by
attern classification

Central to the present study is the idea that pattern classification
an be used to measure the strength of category representation
uring episodic encoding. As there have been relatively few studies
o date that have addressed this topic with similar methods, it is
mportant to consider some of the advantages and caveats inherent
o this analysis approach.
Perhaps the most important consideration with respect to the
resent methodology is that our measure of category representa-
ion was, in fact, a measure of category differentiation: that is, our
lassifier was trained to discriminate Faces vs. Scenes. As such, a
gia 50 (2012) 458– 469 465

given trial should have been more likely to be successfully classi-
fied to the extent that its neural representation was  (a) similar to
the prototypical exemplar of its category, and (b) dissimilar to the
prototypical exemplar of the other category. While our pattern clas-
sification approach does not, on its own, allow for separating the
relative importance of these two  factors, the pattern similarity anal-
ysis described in Section 3.6 provides some support for each of these
ideas, at least within temporal regions. Namely, Remembered items
tended to be associated with greater within-category similarity and
greater between-category dissimilarity (though, there was clearer
evidence for the former). Our finding of greater within-category
pattern similarity for Remembered items vs. Forgotten items may
suggest a benefit of prototypicality (Posner & Keele, 1968) and may
conceptually relate to recent evidence that higher pattern similar-
ity across repeated acts of encoding of an item is associated with
better subsequent memory for that item (Xue et al., 2010). While we
did not observe strong evidence for greater between-category dis-
similarity for Remembered items, another recent study found that
pattern dissimilarity across temporally adjacent encoding events is
associated with better subsequent memory for context (Jenkins &
Ranganath, 2010).

The pattern similarity analysis described here also addresses
another important question raised by the pattern classification
approach. Namely, because our pattern classifier was trained to
discriminate Face vs. Scene trials by using data from the encoding
phase, and because most of the encoded trials were subsequently
remembered, it is theoretically possible that the observed relation-
ship between classifier performance and subsequent memory was
influenced by a subtle bias in classifier training. That is, it is possi-
ble that Remembered and Forgotten items were, in fact, associated
with comparably ‘strong’ representations, but that these represen-
tations were simply distinct. If so, the fact that the training data
used by the classifier was, on average, comprised more Remem-
bered than Forgotten items might have led to better classification
of Remembered items than Forgotten items simply because the
classifier was  trained on more Remembered items. However, the
results of our pattern similarity analyses argue against this inter-
pretation. Specifically, the within-category correlations indicated
that Forgotten items were: (a) less correlated with other Forgot-
ten items than Remembered items were with other Remembered
items, and (b) more correlated with Remembered items than other
Forgotten items. The weaker correlation among Forgotten items
argues against a distinct but comparably strong representation for
Forgotten items. The greater correlation of Forgotten items with
Remembered items, relative to other Forgotten items, is consistent
with the idea that Forgotten items tended to be weaker or noisier
versions of the representations for Remembered items in the same
way that two  copies of an original, each subject to independent
influences of noise, will each tend to be more correlated with the
original than with each other.

While the pattern similarity results provide a compelling argu-
ment against concerns about bias in the training data leading to
better classification of Remembered items, we also addressed this
concern in a second way. Namely, as an alternative to training
the pattern classifier using the encoding data, we ran a separate
classification analysis for which data from the face/scene localizer
were used to train the classifier and the classifier was then tested
on all encoding trials. While the localizer was  comprised fewer
trials—and thus potentially underpowered relative to our first
approach—the advantages of training the classifier on the localizer
data are (a) that the localizer did not involve intentional episodic
encoding, (b) stimuli in the localizer task were not accompanied

by words, and (c) all stimuli in the localizer were non-famous,
novel images, thus reducing the contribution of semantic repre-
sentations. Critically, data from this classifier strongly replicated
our main findings: classifier evidence was greater for subsequently
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emembered items both in temporal ROIs (F(1,17) = 4.72, p < .05;
o interaction with ROI (F < 1)) and prefrontal ROIs (F(1,17) = 9.77,

 < .01; no interaction with ROI (F < 1)). Thus, these data indicate
hat our subsequent memory results cannot be fully attributed
o the fact that our classifier was: (a) trained on data from an
pisodic encoding task with an imbalance in Remembered vs.
orgotten items, (b) trained on data where words were paired
ith images, or (c) trained on well-known and semantically rich

mages.
A final issue related to our approach is whether pattern classi-

cation analyses, or multi-voxel pattern analyses more generally,
epresent a more sensitive means for assessing encoding success. At
rst pass, the present results appear consistent with this idea as we
bserved reliable subsequent memory effects across prefrontal and
emporal regions using our pattern classification analysis, but we
id not observe univariate results that were significant at a standard
hreshold (P < .001). However, the comparison of univariate vs. clas-
ification results is not straightforward. For example, whereas a fast
vent-related design is often optimal for univariate analyses, a slow
vent-related design of the type used here is typically better-suited
o pattern classification analyses. Additionally, because univari-
te analyses typically involve applying thousands or even tens of
housands of statistical tests (one test per voxel), statistical thresh-
lds are typically much stricter to protect against false positives,
hereas with classification analyses, data from thousands or tens

f thousands of voxels can be aggregated so that a key analysis may
educe to a single statistical test. Despite the caution that is war-
anted in comparing univariate analyses to MVPA, it is likely that
VPA will offer increased sensitivity in many contexts (Norman

t al., 2006), potentially including the study of episodic encoding
uccess1 (Watanabe et al., 2011).

.2. Prefrontal category information and subsequent memory

In the present study, Face and Scene trials were associated
ith differential patterns of activity within prefrontal cortex during

pisodic encoding, as reflected by the success of our pattern classifi-
ation analyses. Somewhat surprisingly, classification accuracy was
obust across all prefrontal ROIs, suggesting widespread represen-
ation of category information across prefrontal cortex. However,
he success of classification across prefrontal ROIs does not indicate
hat the information content was equivalent across ROIs. Rather, as
he univariate contrast of Face vs. Scene encoding indicated, Face-
nd Scene-sensitive voxels were differentially distributed across
refrontal ROIs, with Face-sensitive voxels most prevalent in infe-

ior frontal and medial prefrontal cortex and Scene-sensitive voxels
ost prevalent in middle frontal regions (Fig. 1B). Consideration of

mage sub-category classification (i.e., decoding the Male/Female

1 In light of a recent study that used MVPA to show that individual encoding trials
an be successfully classified as subsequently Remembered vs. Forgotten (Watan-
be  et al., 2010), we  considered whether such an approach could be applied to the
resent data. However, whereas our classification of Faces vs. Scenes involved a bal-
nced set of 48 trials per condition, classification of Remembered vs. Forgotten items
equired artificially balancing the Remembered and Forgotten bins (to avoid biased
lassification) and doing so within each image category (to avoid confounds of image
ype). Accordingly, four subjects were excluded from this analysis because they had
ewer than 5 trials in either the Face–Forget or Scene–Forget bins. For each of the
emaining 14 subjects, we  included 10 iterations where, for each iteration, a differ-
nt random set of trials was  excluded to artificially balance the conditions. Averaging
cross temporal ROIs, classification accuracy did not significantly differ from chance
M  = 48.8%, t(13) = −.77, p = .45); likewise for prefrontal ROIs (M = 51.7%, t(13) = 1.25,

 = .23). Considering performance for individual ROIs, however, SFG was  significantly
bove chance (M = 54.7%, t(13) = 3.42, p < .005, significant following Bonferroni cor-
ection). While it is of theoretical interest to determine whether this approach of
irectly classifying items as subsequently Remembered vs. Forgotten will yield fun-
amentally different conclusions than the approach employed in the present paper,
he  lack of adequate power for this analysis precludes such a discussion here.
gia 50 (2012) 458– 469

status of Faces or the Natural/Manmade status of Scenes) provided
further evidence for category representation in prefrontal cortex,
as we  observed reliable sub-category classification in prefrontal
cortex—particularly in lateral prefrontal regions (IFG, MFG, SFG)
(Kaul, Rees, & Ishai, 2011).

The observation of category sensitivity in prefrontal cortex
raises a fundamental question: what is the nature of prefrontal rep-
resentations of category? Despite considerable interest in the topic,
a definitive specification of the functional organization of prefrontal
cortex has proven to be elusive (e.g., Wilson, Gaffan, Browning, &
Baxter, 2010; Wood & Grafman, 2003). At a first level of analysis,
the dissociable patterns of activity for Faces and Scenes observed
here appear consistent with the idea of content-sensitivity within
prefrontal cortex during encoding (e.g., Golby et al., 2001; Grady,
McIntosh, Rajah, & Craik, 1998; Johnson, Raye, Mitchell, Greene, &
Anderson, 2003; McDermott, Buckner, Petersen, Kelley, & Sanders,
1999; Wagner, Poldrack, et al., 1998). In particular, the localiza-
tion of Face-sensitive voxels to IFG is consistent with prior fMRI
studies of Face processing in humans (e.g., Courtney, Petit, Maisog,
Ungerleider, & Haxby, 1998; Ishai, Schmidt, & Boesiger, 2005) and
with studies of monkey prefrontal cortex which have demon-
strated Face-sensitive responses in the inferior frontal convexity
using both fMRI (Tsao, Schweers, Moeller, & Freiwald, 2008) and
recordings from individual neurons (Scalaidhe, Wilson, Goldman-
Rakic, 1997). Similarly, the localization of Scene-sensitive voxels
to more dorsal aspects of prefrontal cortex in the present study
is potentially consistent with evidence that dorsal prefrontal cor-
tex represents spatial information, both in humans (e.g., Courtney
et al., 1998) and monkeys (e.g., Wilson, Scalaidhe, & Goldman-Rakic,
1993).

While at least some degree of content-sensitivity in prefrontal
cortex seems likely, prefrontal content-sensitivity is thought to
fundamentally differ from content-sensitivity in posterior sites.
For example, a hallmark of prefrontal representations of per-
ceptual information is that they are modulated by behavioral
relevance—that is, prefrontal cortex preferentially represents rel-
evant or diagnostic features of an event (e.g., Duncan, 2001;
Freedman et al., 2001; Freedman, Riesenhuber, Poggio, & Miller,
2003; Li, Ostwald, Giese, & Kourtzi, 2007; Rainer, Asaad, & Miller,
1998). In the present study, image category (Face vs. Scene) was of
clear relevance to subjects during encoding, as they were aware
of the forthcoming retrieval phase. Notably, however, we also
observed reliable classification of image sub-category in prefrontal
cortex even though the distinctions between sub-categories were
not explicitly relevant. Thus, in future work it may  be of interest
to specifically consider how prefrontal representations of informa-
tion during encoding vary as a function of perceived behavioral
relevance, and whether the relationship between representation
and subsequent memory is modulated by perceived relevance.
Additionally, prefrontal representations may  differ from posterior
representations in the degree to which they allow for integration
across distinct types of information, particularly when conjunc-
tions of information are behaviorally relevant (e.g., Prabhakaran,
Narayanan, Zhao, & Gabrieli, 2000; Rao, Rainer, & Miller, 1997).
Thus, in contrast to Face and Scene-sensitive regions in temporal
lobe structures that may  predominantly reflect visual features of
stimuli, prefrontal regions may  integrate visual, semantic, or other
forms of information.

An alternative to this content-representation account is the
possibility that the observed prefrontal sensitivity to visual cat-
egories reflects not the representation of visual stimuli, per se,
but the engagement of distinct control processes engaged during

Face vs. Scene encoding. On the one hand, separable processes
could be engaged precisely because prefrontal cortex exhibits
content-sensitivity—that is, analogous processes may be supported
by distinct structures according to the type of information being
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rocessed (Johnson et al., 2003). Alternatively, different visual
ategories may  tend to differentially engage domain-general pro-
esses. For example, in the present study, Face and Scene trials may
ave differed in the degree to which they elicited semantic anal-
sis, sub-vocal rehearsal, attention to spatial information, or any
umber of processes that might be reflected in differential pre-

rontal activation (e.g., Baker, Sanders, Maccotta, & Buckner, 2001;
emb et al., 1995; Johnson et al., 2003; Otten & Rugg, 2001; Race,
hanker, & Wagner, 2009; Wig, Miller, Kingstone, & Kelley, 2004).
he potential for spontaneous variation in encoding strategy is par-
icularly plausible in the present study, where we did not prescribe

 specific strategy (Kirchhoff & Buckner, 2006). Ultimately, while
ccounts of visual category sensitivity in prefrontal cortex based on
ontent-specificity vs. type of processing are theoretically dissocia-
le, these accounts are not mutually exclusive (Wood & Grafman,
003).

The content representation and control process account of pre-
rontal category representation can also be extended to account for
he relationship between classifier performance and subsequent

emory. For example, one account of the subsequent memory
esults is that encoding success was a function of the degree to
hich control or strategic processes were engaged during encod-

ng. Prefrontal cortex is known to be particularly necessary when
nemonic tasks require strategic processing (e.g., Shimamura,

995) and the encoding task employed here, which required the
ormation of novel associations between words and images, was
ikely to engage such processes. Thus, to the extent that Faces
nd Scenes engaged distinct processes, the observed relationship
etween classifier performance and subsequent memory could
eflect the success with which these mechanisms were engaged.
lternatively, to the extent that prefrontal classification of visual
ategory was driven by content representation, the present results
ay  reflect a relationship between the fidelity with which stim-

li were represented at encoding and the likelihood that they
ere later retrieved. To the extent that prefrontal representations

nvolve integration of various features, this relationship could also
eflect the degree to which features were successfully integrated.
hese competing accounts can potentially be addressed by consid-
ring how prefrontal category representation—and its relation to
ubsequent memory—is modulated by task demands: for example,
s category information in prefrontal cortex weaker when images
re incidentally encoded and strategic processing is not invoked
r are these representations more obligatory and independent of
ontrol processing?

A separate question concerning the present results is why  the
elationship between category information and subsequent mem-
ry did not significantly differ across prefrontal ROIs? While the
eneral point that prefrontal cortex supports successful episodic
ncoding is reflected in an extensive literature (e.g., Blumenfeld &
anganath, 2007; Brewer et al., 1998; Clark & Wagner, 2003; Kim,
011; Spaniol et al., 2009), this literature has typically described
ubsequent memory effects in IFG and less frequently in more
orsal prefrontal cortex (Blumenfeld & Ranganath, 2007; Kim,
011). At present, it is not clear whether this apparent dissociation
etween the present results and the broader literature considering
nivariate subsequent memory analyses is simply attributable to
he increased sensitivity of classification analyses (Norman et al.,
006; Watanabe et al., 2011), or whether it reflects a fundamentally
ifferent relationship that was captured by the present analyses
e.g., being due to the associative demands of the subsequent mem-
ry test; Blumenfeld & Ranganath, 2007).
.3. Temporal lobe category information and subsequent memory

Category-selectivity within temporal lobe structures has been
xtensively studied with respect to face vs. scene processing,
gia 50 (2012) 458– 469 467

with faces known to elicit activation in fusiform gyrus (which
includes multiple distinct patches that differentially respond to
faces; e.g., Weiner & Grill-Spector, 2010) and scenes eliciting acti-
vation in parahippocampal cortex (e.g., Epstein & Kanwisher, 1998).
Responses in these regions have been shown to differentiate suc-
cessful vs. unsuccessful Face or Scene encoding. For example,
during Scene encoding, greater activation in parahippocampal cor-
tex is associated with superior subsequent memory (e.g., Awipi &
Davachi, 2008; Brewer et al., 1998; Hayes, Nadel, & Ryan, 2007;
Kirchhoff et al., 2000; Preston et al., 2010; Prince et al., 2009;
Turk-Browne, Yi, & Chun, 2006). A similar relationship is even
observed when considering pre-trial parahippocampal activation
(Turk-Browne et al., 2006), suggesting a relationship between
attentional variance and memory formation. Likewise, responses
within fusiform gyrus during Face encoding are predictive of sub-
sequent face memory (Nichols, Kao, Verfaellie, & Gabrieli, 2006;
Prince et al., 2009; Sergerie, Lepage, & Armony, 2005;).

In the present study, the relationship between category rep-
resentation in temporal lobe structures and subsequent memory
was  subtle: while subsequently Forgotten items were not associ-
ated with lower classification accuracy during encoding, they were
associated with reliably weaker classifier evidence. In other words,
subsequently Forgotten items were clearly processed to a degree
that allowed the vast majority of trials to be correctly classified
(e.g., 98.9% accuracy for FG), but there was nonetheless evidence
that representations in temporal structures were stronger for sub-
sequently Remembered vs. Forgotten images.

The present results relating temporal lobe category repre-
sentation during encoding to subsequent memory outcomes
complement prior work demonstrating that memory outcomes are
closely related to the strength with which temporal lobe category
information is reactivated at retrieval (e.g., Kuhl et al., 2011; for
review, see Rissman & Wagner, in press). Together, these find-
ings indicate that strong category representation in temporal lobe
regions is diagnostic of both successful encoding and successful
retrieval. While the application of MVPA to studying neural reac-
tivation at retrieval has, to date, received more attention (e.g.,
Johnson, McDuff, Rugg, & Norman, 2009; Lewis-Peacock & Postle,
2008; McDuff et al., 2009; Polyn, Natu, Cohen & Norman, 2005),
the present findings suggest that MVPA may prove a useful tool
for relating encoding operations to subsequent retrieval or reacti-
vation. While the present study focused on relatively coarse levels
of representation (faces vs. scenes), a particularly interesting ques-
tion for future research is whether the relative strength with which
individual features of an event are represented during encoding,
as measured by MVPA, is predictive of the degree to which these
features are later remembered and/or reactivated. As such, MVPA
may  constitute a very sensitive and unique tool for measuring how
attention is oriented during event encoding and how attentional
allocation relates to memory outcomes.

4.4. Correlations between prefrontal and temporal regions

In the present study, we  separately considered category
information in prefrontal and temporal structures. However,
successful encoding likely depends on interactions between
prefrontal and posterior sites (e.g., Simons & Spiers, 2003;
Summerfield et al., 2006). While functional connectivity (Friston,
Frith, Liddle, & Frackowiak, 1993) has often been considered
in terms of inter-regional correlations in the fMRI time series
data, connectivity can also be indexed by correlated fluctu-
ations in trial-by-trial activity estimates across regions (e.g.,

Rissman, Gazzaley, & D’Esposito, 2004). Here, rather than cor-
relating univariate activity measures across distinct regions, we
assessed whether MVPA-based measures of category informa-
tion derived from distinct ROIs were correlated. Specifically, we
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ested whether trial-by-trial variance in the strength of posterior
epresentations of visual category was correlated with variance in
he strength of prefrontal representations of visual category. We
ssessed this relationship across all pairings of prefrontal and tem-
oral ROIs and as a function of image category (Face vs. Scene
ncoding).

Overall, the correlations between prefrontal and temporal
egions were positive, indicating that the strength of classifier evi-
ence in temporal ROIs was positively related to the strength of
lassifier evidence in prefrontal ROIs. The robust positive relation-
hip between information in temporal and prefrontal ROIs indicates
hat these representations were not independent, consistent with
he idea of frontal–temporal interactions. However, we did observe

 significant interaction between prefrontal ROI and image cat-
gory, indicating that correlations with temporal lobe structures
aried across prefrontal ROIs according to whether a Face or Scene
as being encoded. Considering individual prefrontal ROIs, OFC
as selectively associated with an interaction between temporal
OI and image category—that is, the strength of OFC’s correlation
ith HIPP, PHG, and FG was strongly modulated by image category.
lthough not predicted a priori, the selective interaction for OFC is

ntriguing and may  suggest a sensitivity of OFC to visual category
epresentations in temporal lobe structures (Bar et al., 2006).

The present region-to-region correlation analyses also suggest
n interesting alternative to traditional functional connectivity
nalyses. That is, by leveraging the sensitivity of MVPA, we were
ble to characterize correlations in information representation
cross distinct neural sites. A related approach is to test for indi-
idual voxels whose activation correlates with the output of a
lassifier applied in some region of interest (e.g., Kuhl et al., 2011;
i, Mayhew, & Kourtzi, 2009). In the context of episodic encoding,
sing MVPA to test for correlations between neural sites is partic-
larly appealing for consideration of how perceptual information
ropagates from early visual regions to higher-level visual regions
nd, ultimately, to putatively higher-order prefrontal regions.

.5. Conclusion

Here, we employed a novel approach to examine encoding fac-
ors that support successful memory formation. By using MVPA,
e were able to decode the visual category of information cur-

ently being encoded and to assess (a) how these representations
ere distributed across prefrontal and temporal regions, and (b)
ow the strength of these representations related to later memory
utcomes. We  observed strong evidence for category represen-
ation both in prefrontal and temporal lobe structures, with the
trength of prefrontal information predictive of later memory
uccess both on a trial-by-trial basis and across subjects. The rela-
ionship between information strength and subsequent memory
as more subtle—but still robust—in temporal regions, with small

eductions in strength reflecting a lower likelihood of subsequent
emembering. Notably, these reductions in information strength
n temporal regions were not evident in trial-level measures of
lassification accuracy as the reductions were too subtle to substan-
ially lower the probability that an individual trial was successfully
lassified. This dissociation between measures of classifier perfor-
ance provides important evidence for graded representations of

nformation during encoding. Finally, consideration of trial-by-trial
ariance in classifier-based evidence derived from prefrontal vs.
emporal regions revealed robust positive correlations between
nformation strength in these regions, suggesting their functional

nteractivity. Together, by characterizing the nature and conse-
uences of neural representations during event encoding, these
esults further our understanding of how visual experiences are
ranslated into lasting memories.
gia 50 (2012) 458– 469
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