
NeuroImage 94 (2014) 12–22

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
Neural portraits of perception: Reconstructing face images from evoked
brain activity
Alan S. Cowen a,⁎, Marvin M. Chun b, Brice A. Kuhl c,d

a Department of Psychology, University of California Berkeley, USA
b Department of Psychology, Yale University, USA
c Department of Psychology, New York University, USA
d Center for Neural Science, New York University, USA
⁎ Corresponding author.
E-mail address: alan.cowen@berkeley.edu (A.S. Cowen

http://dx.doi.org/10.1016/j.neuroimage.2014.03.018
1053-8119/© 2014 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Accepted 8 March 2014
Available online 17 March 2014
Recent neuroimaging advances have allowed visual experience to be reconstructed from patterns of brain activ-
ity. While neural reconstructions have ranged in complexity, they have relied almost exclusively on retinotopic
mappings between visual input and activity in early visual cortex. However, subjective perceptual information
is tied more closely to higher-level cortical regions that have not yet been used as the primary basis for neural
reconstructions. Furthermore, no reconstruction studies to date have reported reconstructions of face images,
which activate a highly distributed cortical network. Thus, we investigated (a) whether individual face images
could be accurately reconstructed from distributed patterns of neural activity, and (b) whether this could be
achieved even when excluding activity within occipital cortex. Our approach involved four steps. (1) Principal
component analysis (PCA) was used to identify components that efficiently represented a set of training faces.
(2) The identified components were thenmapped, using amachine learning algorithm, to fMRI activity collected
during viewing of the training faces. (3) Based on activity elicited by a new set of test faces, the algorithmpredict-
ed associated component scores. (4) Finally, these scores were transformed into reconstructed images. Using
both objective and subjective validation measures, we show that our methods yield strikingly accurate neural
reconstructions of faces even when excluding occipital cortex. This methodology not only represents a novel
and promising approach for investigating face perception, but also suggests avenues for reconstructing ‘offline’
visual experiences—including dreams, memories, and imagination—which are chiefly represented in higher-
level cortical areas.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Neuroimaging methods such as fMRI have provided tremendous
insight into how distinct brain regions contribute to processing
different kinds of visual information (e.g., colors, orientations,
shapes, or higher-level visual categories such as faces or scenes).
These studies have supported inferences about the neural mechanisms
or computations that underlie visual perception by documenting how
various types of stimuli influence brain activity. However, knowledge
about the relationship betweenvisual input and corresponding neural ac-
tivity can also be used for reverse inference: to predict or literally recon-
struct a visual stimulus based on observed patterns of neural activity.
That is, by understanding how an individual's brain represents visual in-
formation, it is possible to ‘see’what someone else sees.While there are a
relatively limited number of studies reporting neural reconstructions to
date, the feats of reconstruction that have been achieved thus far are im-
pressive. In addition to reconstruction of lower-order information such as
).
binary contrast patterns (Miyawaki et al., 2008; Thirion et al., 2006) and
colors (Brouwer andHeeger, 2009), there are also examples of successful
reconstruction of handwritten characters (Schoenmakers et al., 2013),
natural images (Naselaris et al., 2009), and even complex movie clips
(Nishimoto et al., 2011).

However, even reconstructions of complex visual information have
relied almost exclusively on exploiting information represented in
early visual cortical regions (typically V1 and V2). Exceptions to this in-
clude evidence from Brouwer and Heeger (2009) that color can be re-
constructed from responses in intermediate visual areas such as V4,
and evidence from Naselaris et al. (2009) showing that reconstruction
of natural images benefits from inclusion of higher-level visual areas
(anterior occipital cortex) that are thought to represent semantic infor-
mation about images. But reconstructions of visual stimuli based on pat-
terns of activity outside occipital cortex have not, to our knowledge,
been reported. The potential for reconstructions from higher-level re-
gions (e.g., ventral temporal cortex or even fronto-parietal cortex) is en-
ticing because reconstructions from these regions may be more closely
related to perceptual experience as opposed to visual analysis (Smith
et al., 2012).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2014.03.018&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2014.03.018
mailto:alan.cowen@berkeley.edu
http://dx.doi.org/10.1016/j.neuroimage.2014.03.018
http://www.sciencedirect.com/science/journal/10538119
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Here, we attempted to reconstruct images of faces—a stimulus class
that has not previously been reconstructed from neural activity. While
face images—like other visual images—could, in theory, be reconstructed
from patterns of activity in early visual cortex (i.e., via representations of
contrast, orientation, etc.), we were also interested in the potential to
reconstruct faces based on patterns of activity in higher-level regions. A
number of face-selective (or face-preferring) regions have been identi-
fied outside of early visual cortex—for example, the occipital face area
(Gauthier et al., 2000), fusiform face area (Kanwisher et al., 1997), and
superior temporal sulcus (Puce et al., 1998) are all thought to contribute
to aspects of face perception. Furthermore, other non-occipital regions
have been implicated in the processing of relatively subjective face prop-
erties such as race (Hart et al., 2000) and emotional expression (Whalen
et al., 1998). Thus, faces represent a class of visual stimuli that may be
particularly suitable for ‘higher-level’ neural reconstructions. Moreover,
a major computational advantage of using face stimuli is that there are
previously established methods, based on principal component analysis
(PCA), to dramatically reduce the dimensionality of face images such
that an individual face can be accurately represented by a relatively
small number of components. The representation of faces via a limited
set of PCA components (or eigenfaces) has proved useful in domains
such as face recognition (Turk and Pentland, 1991), but the application
to neural reconstructions is novel.

In short, our approach to reconstructing face images from brain activ-
ity involved four basic steps (Fig. 1). First, PCAwas applied to a large set of
training faces to identify a set of components (eigenfaces) that efficiently
represented the face images in a relatively low dimensional space (note:
this step was based on the face images themselves and was entirely
unrelated to neural activity). Second, amachine-learning algorithm (par-
tial least squares regression, or PLSR) was used to map patterns of fMRI
activity (recorded as participants viewed faces) to individual eigenfaces
(i.e., the PCA components representing the face images). Third, based
on patterns of neural activity elicited by a distinct set of faces (test
faces), the PLSR algorithm predicted the associated eigenface component
Training 
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Fig. 1.Overviewof reconstructionmethod. First, principal component analysis (PCA)was applie
from the training faces weremapped to evoked patterns of neural activity using a partial least s
viewing of a distinct set of 30 test faces, the PLSR algorithm predicted each component score fo
face. For comparison, test faces were also directly reconstructed based on component scores ex
scores. Fourth, an inverse transformation was applied to the component
scores that were predicted for each test face to generate a reconstruction
of that face. To empirically validate the success of neural reconstructions,
and to compare reconstructions across distinct brain regions,we assessed
whether reconstructed faces could be identified as corresponding to the
original (target) image. Identification accuracy was assessed via objec-
tive, computer-based measures of image similarity and via subjective,
human-based reports of similarity.

Methods

Participants

Six participants (2 females) between the ages of 18 and 35
(mean age = 21.7) were recruited from the Yale University com-
munity. Informed consent was obtained in accordance with the
Yale University Institutional Review Board. Participants received
payment in exchange for their participation.

Materials

A total of 330 face images were used in the study. Face images were
obtained from a variety of online sources [e.g., www.google.com/
images, www.cs.mass.edu/lfw (Huang et al., 2007)] and were selected
such that faces were generally forward facing with eyes and mouth visi-
ble in each image. The faces varied in terms of race, gender, expression,
hair, etc. For all images, the location of the left eye, right eye, and
mouth were first manually labeled (in x/y coordinates). Each image
was then cropped and resized to 110 by 154 pixels with the constraints
that (a) the mean vertical position of the eyes was 52 pixels above the
vertical position of the mouth, (b) the image was 110 pixels wide, cen-
tered about themeanof the horizontal position of themouth and the cen-
ter point of the eyes, (c) 61 pixels were included above themean vertical
position of the eyes, and (d) 41 pixels were included below the vertical
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d to a set of 300 training faces to generate component eigenfaces. Second, component scores
quares regression (PLSR) algorithm. Third, based on patterns of activity elicited during the
r each test face. Fourth, predicted component scores were used to reconstruct the viewed
tracted from the test face (a ‘non-neural reconstruction’; gray box; see also Fig. S1).
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position of themouth. Thus, all 330 face imageswere of equal size and the
centers of the eyes and mouth of each face were carefully aligned to one
another—criteria that were found to yield highly effective image registra-
tion in studies of computerized face image classification (Donato et al.,
1999).

300 of the 330 face images were designated as training faces and the
remaining 30 faces were reserved as test faces. The 30 test faces were
held constant across participants and were pseudo-randomly selected
such that they included a range of ethnicities, genders, and expressions.

Procedure

During each trial in the experiment, a face image was presented
(2000 ms) and participants indicated via button box whether they
had seen that face on any of the preceding trials (left key = ‘new’,
right key = ‘old’). Each face image was followed by a 1300 ms fixation
cross and then a distracting “arrow task” (5200 ms) that required par-
ticipants to indicate, via button press, the directionality of four left- or
right-facing arrows. The purpose of the arrow task was dually to keep
subjects alert and to attenuate the rehearsal of images in visual short-
term memory. Finally, another fixation cross was presented (1500 ms)
before the start of the next trial.

There were a total of 360 trials in the experiment: 300 training
image trials and 60 test image trials. Each training image appeared
once and each test image appeared twice. The test image trials were
pseudorandomly intermixed with the training image trials such that
the first and second presentations of each test image appeared within
the same run and were not adjacent to one another.

fMRI methods

fMRI scanning was conducted at the Yale Magnetic Resonance
Research Center (MRRC) on a 3.0 T MRI scanner. Following a high
resolution (1.0 × 1.0 × 1.0 mm) anatomical scan and a coplanar
(1.0 × 1.0 × 4.0 mm) anatomical scan, functional images were obtain-
ed using a T2*-weighted 2D gradient echo sequence with a repetition
time (TR) of 2 s, an echo time (TE) of 25ms, and a flip angle of 90°, pro-
ducing 34 slices at a resolution of 3.0 × 3.0 × 4.0 mm. The functional
scan was divided into six runs, each consisting of 305 volumes. The
first 5 volumes of each run were discarded. Thus, each run consisted
of 60 trials, with 5 volumes per trial and 2 s per volume. fMRI data
preprocessing was conducted using SPM8 (Wellcome Department of
CognitiveNeurology, London). Imageswerefirst corrected for slice timing
and head motion. High-resolution anatomical images were co-registered
to the functional images and segmented into gray matter, white matter,
and cerebrospinal fluid. Segmented gray matter images were ‘skull-
stripped’ and normalized to a graymatterMontreal Neurological Institute
(MNI) template. Resulting parameters were used for normalization of
functional images. Functional images were resampled to 3-mm3 voxels.
fMRI data were analyzed using a general linear model (GLM) in which a
separate regressor was included for each trial. Trials were modeled
using a canonical hemodynamic response function and its first-order
temporal derivative. Additional regressors representing motion and scan
number were also included. Trial-specific beta values for each voxel
were used as representations of brain activity in all further analyses.

Region-of-interest (ROI) masks were generated using the Anatomical
Automatic Labeling atlas (http://www.cyceron.fr/web/aal__anatomical_
automatic_labeling.html). Masks were generated representing occipital
cortex, fusiform gyrus, lateral temporal cortex, hippocampus, amygdala,
lateral parietal cortex, medial parietal cortex, lateral prefrontal cortex
and medial prefrontal cortex. The masks ranged in size from 194 voxels
(amygdala) to 10,443 voxels (lateral prefrontal). All reported analyses
of individual regions (or fusiform combined with occipital) were based
either on the 1500 voxels within each mask that were most task-
responsive (i.e., the highest average beta values), or—if the mask
contained fewer than 1500 voxels (amygdala and hippocampus)—on
all voxels within themask. Analyses of the whole-brainmask (a com-
bination of all individual masks; 37,605 voxels) and the non-occipital
mask (a combination of all individual masks aside from occipital;
30,381 voxels) were based on the 5000 voxels that were most task-
responsive.

Partial least squares regression

To map patterns of brain activity to eigenface component scores, we
used a formof partial least squares regression (PLSR) that simultaneously
learns to predict every output variable. PLSR is specifically intended to
handle very large data sets, where the number of predictors (here,
voxels) may outnumber the number of observations (here, trials). PLSR
is also well suited to cases where multicollinearity exists among the pre-
dictors (a common problem with fMRI data). Furthermore, unlike other
regression techniques, which only address multivariate patterns in the
input features (e.g., brain activity), PLSR simultaneously finds multivari-
ate patterns in the output features (here, the set of eigenface component
scores) that are maximally correlated with patterns in the input features
(here, brain activity). However, while PLSR was a natural fit for the pres-
ent study and has also previously been successfully applied to other neu-
roimaging data (Krishnan et al., 2011; McIntosh et al., 1996), it should be
noted that other forms of regularized regression (e.g., ridge regression)
would potentially yield similar results.

Results

Eigenfaces

Each face image was represented by a single vector of 50,820 values
(110 pixels in x direction ∗ 154 pixels in y direction ∗ 3 color channels).
Principal component analysis (PCA) was performed on the set of 300
training faces (i.e., excluding the test faces), resulting in 299 component
“eigenfaces” (Turk and Pentland, 1991). When rank ordered according
to explained variance, the first 10 eigenfaces captured 71.6% of the var-
iance in pixel information across the training face images.

To validate the eigenfaces derived from the training faces,we assessed
the effectiveness with which the test faces could be reconstructed based
on their eigenface component scores. In other words, test faces were re-
constructed using ‘parts’ derived from the training faces. Component
scores for a given test face were obtained using the formula

Ytest ¼ WTrainXtest

whereXtest represents a test image,WTrain is theweightmatrix definedby
PCA of the training faces, and Ytest represents the resulting component
scores for the test image. Subjectively, these non-neural reconstructions
strongly resembled the original images (Fig. 1 and Fig. S1). This was ob-
jectively confirmed by evaluating the pixelwise correlation in RGB values
between the original image and the reconstructed image (mean correla-
tion coefficient when using all 299 components = 0.924). Thus, the test
images could be represented with high fidelity based on the 299
eigenfaces derived from PCA of the training faces.

Reconstructing faces from neural activity

The first step in our fMRI analyses was to identify patterns of neural
activity that predicted the eigenface component scores for each image
(based only on the training face trials). To this end,we applied amachine
learning algorithm that learned themapping between component scores
and corresponding brain activity (i.e., to decode component scores from
neural activity). The machine learning algorithm employed here was
partial least squares regression (PLSR; see the Methods section)
(Krishnan et al., 2011; McIntosh et al., 1996). We used the maximum
number of allowable PLSR components (equal to the number of training
faces minus 1). Thus, each of the 300 training faces corresponded to 299

http://www.cyceron.fr/web/aal__anatomical_automatic_labeling.html
http://www.cyceron.fr/web/aal__anatomical_automatic_labeling.html
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Fig. 2. Reconstructions, averaged across participants, from various ROIs. Each row corresponds to a test face seen by each participant; the actual (original) image seen by the participant is
shown in the left column. The ‘non-neural’ PCA reconstruction is shown in the second column from left. Note: “all regions” refers to the 9 ROIs shown in Fig. 3A; “all non-occipital” refers to
the “all regions” ROI minus the occipital ROI.

15A.S. Cowen et al. / NeuroImage 94 (2014) 12–22
component scores (a score for each eigenface) and PLSR learned to pre-
dict each of these 299 component scores based on distributed patterns of
activity observed across the 300 training trials.

After the PLSR algorithmwas trained on data from the training faces,
it was then applied to the pattern of neural activity evoked by each of
the 30 test faces (which was an average of the two beta values corre-
sponding to the two repetitions of each test face). For each of the 30
test faces, the PLSR algorithm thus yielded a predicted component
score for each of the 299 components. Neural reconstructions of each
test face could therefore be generated from the predicted component
scores of the test images via the formula

Xpred ¼ WTrainYpred

whereWTrain is theweightmatrix defined by principle component anal-
ysis on the training faces, Ypred contains the predicted component scores
(obtained from the PLS algorithm), and Xpred represents the recon-
structed test image. Reconstructions were generated for each of the 30
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test faces and for each of the 6 participants. The quality of reconstruc-
tions was assessed both on a participant-by-participant level and also
by generating a mean reconstruction (for each of the 30 test faces)
across the 6 participants. However, to allow for the possibility
that information about the test faces was represented sparsely
throughout the component scores in a way that differed from sub-
ject to subject—implying that a sum across the participants would
be more appropriate than a mean—we compromised by multiply-
ing the difference between the mean reconstructions and the
mean of the training images by the square root of the number of
participants. An attractive feature of this method is that it generat-
ed mean reconstructions that had the same expected error variance
as the individual-subject reconstructions, whereas taking the sum
(equivalent to multiplying the difference between the mean recon-
structions and the mean of the training images by 6) would have in-
creased the expected error variance.

Neural reconstructions were first generated using a mask that in-
cluded the entirety of occipital, parietal, and prefrontal cortices along
with lateral temporal cortex, fusiform gyrus, the hippocampus, and
amygdala. We used reconstructions generated from this “all regions”
mask as the primary validation of our analysis approach. However,
for the sake of comparing information represented in different brain
regions, we also separately report reconstruction performance for indi-
vidual regions of interest (ROIs) (for details of ROI selection, see the
Methods section). For example, given that we were attempting to re-
construct visual stimuli, we anticipated that patterns of activity in occip-
ital cortex would be informative; however, we were also interested in
whether regions outside of occipital cortexmight also carry information
that would support successful reconstruction (e.g., fusiform gyrus).

Our method for quantifying the success of the neural reconstructions
was to assesswhether a reconstructed face could be successfullymatched
with its corresponding test image (i.e., whether a face could be ‘identi-
fied’). We tested this in two ways: (1) by comparing reconstructions to
test images in a pixel-by-pixel manner, which we refer to as objective
identification, and (2) by having human participants subjectively assess
the similarity between reconstructions and test images—which we will
refer to as subjective identification. To test objective identification accura-
cy, each test image was paired with a ‘lure’ image, which was a different
test image. This pairingwas repeated such that each of the 30 test images
was paired with each of the 29 ‘other’ images (i.e., 30 images × 29
pairings). The Euclidean distance (in the space of pixel-by-pixel RGB
values) between each reconstruction and its corresponding test image
(target), as well as the distance between the reconstruction and the cor-
responding lure image, was computed. For each of these pairings, if the
reconstruction was more similar to the test (target) image than the lure
image, the trial was scored as a ‘hit’ (i.e., the corresponding reconstruc-
tion was successfully ‘identified’); otherwise it was scored as a ‘miss.’
For each participant (and each brain mask), there were a total of 870
trials (30 faces × 29 possible pairings); the percentage of these trials
associated with a hit was computed for each participant and brain mask
and was taken to represent the accuracy of reconstructions for that par-
ticipant/mask.

For the mask representing all regions, mean accuracy (across par-
ticipants) was 62.5% (range, across subjects = 57.4%–68.5%), which
was well above chance (50%) (one tailed, one sample t-test: t5 =
7.4, p= .00035) (Fig. 3B; sample reconstructions for individual partic-
ipants are shown in Fig. S2), providing clear, objective evidence that our
reconstructions were successful. Accuracy was also above chance when
separately considering the occipital mask (M = 63.6%, p = .002) as
well as the non-occipital mask (M = 55.8%, p = .02) (accuracy for
these and additional sub-regions is shown in Fig. 3B).

The test of identification accuracy was also repeated using the mean
reconstructions (i.e., for each test face, the mean of the reconstructed
images generated from each of the six participants). Sample mean re-
constructions for several ROIs are shown in Fig. 2 (see Fig. S3 for all
mean reconstructions from the all regions ROI). Objective (Euclidean
distance-based) identification accuracy for the mean reconstructions
was higher than for individual participants' reconstructions: all regions,
M = 76.2%; occipital, 81.7%; non-occipital, 60.3% (Fig. 3C). Thus, by
combining reconstructions generated by distinct participants, a notable
increase in reconstruction quality was observed. To test whether accu-
racies for the mean reconstructions were significantly above chance,
permutation tests were conducted in which, prior to calculating
Euclidean distance-based accuracy, the mapping between each
test image and its corresponding neural reconstruction was ran-
domly permuted (switched) such that a given test image was
equally likely to be associated with each of the 30 reconstructions.
This process was repeated until 100,000 different random permu-
tations had been tested, generating a chance distribution of
Euclidean distance-based accuracy. Thus, for individual brain masks,
the probability of obtaining the observed Euclidean distance-based accu-
racy under the null hypothesis could be expressed as the proportion of
times (n/100,000) that an accuracy at least that high was observed in
the randompermutations. For each of our core brainmasks, observed ac-
curacywas significantly above chance: all regions, p b .00001; occipital, p
b .00001; non-occipital, p= .01.

While the preceding analyses indicate that reconstructed test images
could be identified (i.e., matched with the corresponding test image)
based on pixel-by-pixel similarity in RGB values, this does not guarantee
that the reconstructions were subjectively similar to the test images.
Thus, we replicated the identification analyses described above with the
exception that instead of a computer algorithm determining whether
the target reconstruction was more similar to the test image than to a
lure image, human participants now made this decision. Here, we only
used the mean reconstructions (i.e. those generated by averaging across
reconstructions from the 6 participants). Human responses were collect-
ed via Amazon'sMechanical Turk. One responsewas collected for each of
the 29 possible pairings, for each of the 30 test faces, and for each of 9 dif-
ferent brain masks. Each participant in the study made 30 ratings (one
rating for each reconstructed test face). Thus, a total of 261 participants
contributed 30 responses each, for a grand total of 7830 responses
collected (870 per brain mask). Again, accuracy of each individual recon-
struction reflected the percentage of trials in which a human (partici-
pant) selected its corresponding test image over the lure. The average
accuracy for a given brain mask was the average across all 29 pairings
for the 30 reconstructions (870 total pairings).

Here, a human-based analog of the permutation test described
above would not have been practical in that it would have required
massive amounts of additional data collection. Instead, we comput-
ed the probability of obtaining the observed accuracy for each
region via a single-tailed one-sample t-test in which accuracy for
each of the 30 neural reconstructions (the proportion of 29
Mechanical Turk participants who chose the associated test face
over the lure) was compared to chance performance of 50%,
thus providing a test of whether reconstruction accuracy would
generalize to new faces. Performance was significantly above
chance in the all regions (p = .00001), occipital (p = .00002),
and non-occipital (p = 0.004) ROIs, as well as in fusiform (p = 0.004),
fusiform + occipital (p = .000005), and medial parietal (p = 0.02)
(Fig. 3C). In addition, the reconstructions derived from the fusiform
gyrus were associated with relatively greater subjective identification
accuracy than objective identification accuracy, whereas the opposite
was true for reconstructions from the occipital cortex (Fig. 3C). This in-
teraction between region (fusiform vs. occipital) and verification
method (subjective vs. objective) was highly significant (F1,119 = 22.4,
p b .0001; images treated as random effects).

Accuracy heat maps

The above results indicate that neural reconstructions of faces were
objectively and subjectively similar to the original test faces. A second-
ary goal was to examine which parts of the faces reconstructed well. To
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Fig. 3. Identification accuracy for reconstructed faces by ROI. (A) Using a standard space brain atlas, nine anatomical ROIs were generated, corresponding to: lateral prefrontal cortex (lat.
PFC), medial prefrontal cortex (med. PFC), lateral temporal cortex (lat. TEMP), hippocampus (HIPP), amygdala (AMYG), fusiform gyrus (FUS), lateral parietal cortex (lat. PAR), medial pa-
rietal cortex (med. PAR), and occipital cortex (OCC). (B)Mean objective (Euclidean distance-based) identification accuracy for reconstructions generated from each participant (gray, hor-
izontal lines) and the average across participants for eachROI (black, vertical bars). For eachROI, accuracy across participantswas compared to chance performance (50%) via a one-sample
t-test. (C) Black bars represent objective (Euclidean distance-based) identification accuracy formean reconstructions (i.e., reconstructions averaged across participants). Error bars reflect
the standard deviation in accuracy when the reconstruction labels were randomly permuted 100,000 times. Accuracy was compared to chance by measuring the proportion of times a
randomly permuted set achieved greater accuracy than the reconstruction set itself. Gray bars represent subjective (human-based) identification accuracy for mean reconstructions.
Error bars reflect standard error of the accuracy for each image (i.e., proportion of times it was chosen over the lure by an AmazonMechanical Turk participant). Accuracy was compared
to chance using a one-sample t-test of the null hypothesis that the accuracy of each image was distributed with mean 0.5. **** p b .001, *** p b .005, * p b .05.
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address this, we re-ran the pixel-based identification analysis (where a
target and lure reconstruction were compared to a test image based on
Euclidean distance of pixel values), but this time measured Euclidean
distance separately for the RGB components of each individual pixel.
In other words, we computed the mean identification accuracy for
each pixel. Pixel-by-pixel accuracy could then be plotted, yielding a
‘heatmap’ that allowed for visualization of the regions that reconstruct-
ed well or poorly. This measurement was applied only to the mean re-
constructions and was separately performed for five different brain
masks. As can be seen in Fig. 4, pixels around the eyes (including eye-
brows),mouth, and forehead all contributed to reconstruction accuracy.
Notably, eye color and pupil location did not reconstruct well; however,
All Regions Occipital 
Lobe 

Fusiform 
Gyrus

* Average eye locations  

Fig. 4.Mean objective (Euclidean distance-based) identification accuracy of each pixel in recon
indicates that image information at that pixel positively contributed to identification accuracy.
this information is likely more subtle and less salient than facial expres-
sions and affect, which would be more clearly captured by eyebrows
and mouth shape. (In general, gaze direction might be one salient fea-
ture of the eyes, but because almost all of the test faces were gazing di-
rectly forward it is not a feature that was likely to contribute to
reconstruction accuracy.)

Neural importance maps

Thus far we have considered the accuracies of reconstructions gen-
erated using a (near) whole-brain mask as well as various broad ana-
tomical regions of interest. We next sought to identify the specific,
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‘local’ clusters of voxels that were most important for generating face
reconstructions. To this end, the PLSR training algorithm was repeated
using the “all regions” ROI, but without any voxel selection. The back-
ward model mapping neural activation to face components was then
transformed into a forward modelmapping face components to neural
activation according to a method recently described by Haufe et al.
(2014) (see Eq. 6). However, to correct for the fact thatweightswere in-
versely proportional to the magnitude of component scores (meaning
that late components with small magnitudes were assigned large
weights), wemultiplied theweight for each component by the variance
of the corresponding component scores. As a result, theweights for each
component were proportional to the magnitude of component scores
(as was the case in the backward model). The model weights were
then averaged for each component across all six subjects. Finally, to pro-
duce a single value reflecting the overall importance of each voxel, we
calculated the root mean square weight for each voxel across the 299
components.

The resulting mean model weights constitute an “importance map,”
with higher values corresponding to voxels that were more predictive
of face components. Notably, the motivation for generating the impor-
tancemapwas not to test which voxels ‘significantly’ contributed to re-
construction accuracy, but instead to provide a visualization of the
voxels that were most important for generating reconstructions. For
display purposes, we selected an arbitrary threshold of .175 times the
maximum weight (i.e., only displaying voxels for which the mean
weight exceeded this value), which was equivalent to selecting the
3117, or 9.05%, most ‘important’ voxels. As can be seen in Fig. 5A–C,
clusters of ‘important’ voxels were located not only in early visual
areas, but also in several areas that have previously been associated
with face processing. For example, clusterswere observed inmid to pos-
terior fusiform gyrus, medial prefrontal cortex, angular gyrus/posterior
superior temporal sulcus, and precuneus.

To more explicitly determine whether the clusters revealed by
the importance map overlap with typical face processing regions,
we used data from an independent, previously described study
(Kuhl et al., 2013) to generate group-level functional ROIs representing
(a) face-selective voxels in the fusiform gyrus (fusiform face area; FFA)
PCu

VC 

ANG 

.18 .35 

A 

Voxel Importance 

C 

Fig. 5. (A–C) “Importancemap” of voxels on a standard space brain atlas. The model weight for
square regressionweight for each voxelwas taken across the 299 components. The resulting “im
at .175, displaying the top 3117 (or 9.05%) most important voxels. The most prominent cluster
precuneus (PCu), and visual cortex (VC). (B) Purple and green outlines delineate functional ROI
fusiform gyrus (FFA; green) and scene-selective regions near the collateral sulcus (PPA; purple
“importance” values in FFA and PPA.
and (b) scene-selective voxels centered on the collateral sulcus
(parahippocampal place area; PPA). Specifically, we selected voxels in
bilateral fusiform gyrus that were more active for face encoding than
scene encoding (p b .001, uncorrected; 185 voxels total) and voxels
at/near the collateral sulcus that were more active for scene encoding
than face encoding [p b 10−10, uncorrected, which yielded an ROI
roughly the same size as the fusiform face ROI (222 voxels)]. As can
be seen in Fig. 5B, the importancemap revealed clusters that fell within
FFA but not in PPA. Moreover, comparing the kernel densities of voxel
importance in these two regions confirmed that FFA voxels were gener-
ally more important than PPA voxels (Fig. 5D). Notably, overlap be-
tween the importance map and face-selective regions (generated
from the previous data set) was also evident in several other regions:
medial prefrontal cortex, precuneus, and angular gyrus (Fig. S4).

Removing low-level visual information

Because our test images (and training images) differed in terms of
color, luminance, and contrast, one concern is that reconstruction accu-
racy was driven by low-level properties. Indeed, previous studies have
shown that even high-level visual regions such as the fusiform face
area can be sensitive to low-level visual properties (Yue et al., 2011).
To address this concern, we re-ran the PLSR algorithm using compo-
nents generated from a PCA analysis of face images for which color, lu-
minance, and contrast differences were removed. First, each face image
was converted to grayscale by averaging across the three color channels.
Each image was also cropped more tightly (34 pixels from the top,
10 pixels from the bottom, and 9 pixels from each side were removed)
to eliminate some remaining background information in the images
that would have influenced luminance normalization. Next, the pixel
values were mapped to 64 discrete gray levels such that, for each face,
roughly the same number of pixels occupied each level of gray. In
other words, after this transformation, the histograms of pixel intensity
values for each image were equivalent (i.e., a uniform distribution for
each image) and, therefore, the mean and variance of pixel intensity
values across images were nearly identical. Thus, even though partici-
pants saw face images that differed in low-level information such as
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each voxel and each componentwas averaged across the six subjects. Then, the root mean
portance” values are scaled such that theirmaximum is equal to 1. Themap is thresholded
s were observed in angular gyrus (ANG), fusiform gyrus, medial prefrontal cortex (MPFC),
s generated from a prior study (Kuhl et al., 2013) corresponding to face-selective regions of
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color, contrast, and luminance, the algorithmwas ‘blind’ to this informa-
tion and thus could not support reconstruction of this information.

Even with color, luminance and contrast information removed
(Fig. 6A), reconstruction accuracy generally remained robust. “Objective”
accuracies for the reconstructions based on normalized images were still
above chance in the “all regions” ROI (M = 70.6%; p b .0001), occip-
ital (M = 68.62%; p b .001) and non-occipital (M = 65.3%; p b .001)
(Fig. 6B). “Subjective” accuracies (collected via Mechanical Turk: 30
ratings per subject ∗ 29 unique image pairings ∗ 3 ROIs = 2610 ratings)
were above chance in the “all regions” ROI (M= 59.2%; p b .001) and oc-
cipital ROI (M= 60.1%, p b .0001). Thus, while some low-level informa-
tion (e.g., skin tone) is likely related to high-level face processing, the
present reconstruction results cannot be explained in terms of low-level
differences in color, luminance, and contrast. In fact, the normalized-
image reconstructions derived from the non-occipital ROI were associat-
ed with relatively greater objective identification accuracy than the re-
constructions based on non-normalized images. The opposite was true
for reconstructions from the occipital cortex: relatively greater objective
identification accuracy for the reconstructions derived from non-
normalized, relative to normalized, images. The interaction between
region (OCC vs. non-OCC) and normalization was significant (F1,119 =
11.1, p b .005; images treated as random effects). Thus, while color,
luminance, and contrast information in the face images may have
modestly improved reconstructions generated from occipital cortex, it
did not contribute to reconstructions generated from non-occipital
regions.

Pattern similarity approach

Though the method of reconstructing perceived faces from their
evoked brain activity by predicting their eigenface coefficients is clearly
effective, it is possible that computationally simpler methods could
achieve similar success. In particular, we were interested in whether
perceived faces could be ‘reconstructed’ by simply selecting the training
face (or averaging a set of training faces) that elicited similar patterns of
brain activity.

To this end, reconstructions were produced by averaging the first N
training face images whose corresponding brain activity was most sim-
ilar to that associated with a given test face, where Pearson's product-
moment correlation coefficient was used to assess similarity. This was
performed separately for each participant and brain mask. The recon-
structions of a given test face from each subject were averaged together
(i.e., across subjects) and their difference from the mean image was
multiplied by the square root of 6 × N and added back into the mean
image (as with the PCA based reconstructions, but accounting for the
fact that themean image is now the average of 6 × N images). The accu-
racy of the resulting set of reconstructions was assessed via the same
Euclidean distance-based matching task that was used to assess the
PCA-based neural reconstructions. The accuracies of similarity-based
neural reconstructions are shown in Fig. 7, where N varies from 1
(selecting the single most similar face) to 300 (selecting all training
faces). p-Values were computed via the same permutation-based hy-
pothesis test that was used to evaluate the PCA-based reconstructions.

Although there was a moderately large number of values of N for
which the similarity-based neural reconstructions were significantly
above chance (without correcting for the fact that there were 300 com-
parisons) (Fig. 7), even the peak accuracy of these reconstructions
(when N = 68 faces; Fig. S5) was far lower than the accuracy of the
PCA-based reconstructions from the same voxels (shown, for compari-
son, in Fig. 7). In particular, it is evident that selecting the single most
similar training face as a ‘reconstruction’ was not effective at all. While
we believe these results clearly highlight the advantage of the PCA-
based reconstruction approach, it should be noted that the relative dif-
ference between the PCA-based approach and a similarity-based
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approach would potentially vary as a function of the number of times
each training face was presented as well as the total number of unique
images—factors we cannot explore in the present study.

Discussion

Here, we used a machine learning algorithm to map distributed pat-
terns of neural activity to higher-order statistical patterns contained
within face images. We then used these mappings to reconstruct, from
evoked patterns of neural activity, face images viewed by human partic-
ipants. Our results provide a striking confirmation that face images can be
reconstructed frombrain activity bothwithin and outside of occipital cor-
tex. The fidelity of the reconstructions was validated both by an objective
comparison of the pixel information containedwithin the original and re-
constructed face images and by having human observers subjectively
identify the reconstructed faces. While the limited number of neural re-
construction studies to date have had the same essential motive—to pro-
vide a direct (and frequently remarkable) visual representation of what
someone is seeing—the present study is novel in terms of the neural
regions from which reconstructions were generated, the specific
methods (including stimulus class) used for reconstruction, and the po-
tential applications of the results.We consider each of these points below.

Reconstructions from higher-level brain regions

Prior neural reconstruction studies have relied almost exclusively
upon retinotopically organized activity in early visual regions (V1,
V2); exceptions include reconstructions of natural scenes that were
based on both early and late visual areas of occipital cortex (Naselaris
et al., 2009) and reconstructions of isolated color information based
on intermediate visual areas (e.g., V4) (Brouwer and Heeger, 2009).
Thus, an important aspect of our findings is that we achieved reliable
reconstruction accuracy even when excluding all of occipital cortex.
While there is at least some degree of retinotopic organization outside
of occipital cortex (Hemond et al., 2007), reconstructions generated
when excluding occipital cortex are less likely to be based on
retinotopically organized information. Indeed, while the actual form of
the reconstructions we producedwas ‘visual’, it is likely that these recon-
structions were partly driven by patterns of activity representing seman-
tic information (Huth et al., 2012; Mitchell et al., 2008; Stansbury et al.,
2013).

The reconstructions derived from the fusiform gyrus are particularly
interesting in that they were associated with relatively greater subjec-
tive identification accuracy (i.e. via human recognition) than objective
identification accuracy (via pixel-based Euclidean distance), whereas
the opposite was true for reconstructions from the occipital cortex
(Fig. 3C). This dissociation is consistent with evidence that the fusiform
gyrus is more involved in subjective aspects of face processing than oc-
cipital regions (Fox et al., 2009a). For example, activity in the fusiform
face area (FFA)—but not the occipital face area (OFA)—is related to par-
ticipants' subjective perceptions of face identity and facial expression,
whereas activity in the OFA tracks structural changes but does not
distinguish between different subjective perceptions of identity and
expression (Fox et al., 2009b). Our success in deriving reconstructions
from the fusiform gyrus also provides evidence that activity patterns
in the fusiformgyrus differentiate between distinct face images.Wheth-
er the face representations in fusiform gyrus were also identity specific
(Verosky et al., 2013)—that is, whether different images of the same
identity would yield similar reconstructions—cannot be established
here since each face image thatwe used corresponded to a distinct iden-
tity. However, future studies could test for identity-specific information
by varying viewpoint (Anzellotti et al., 2013). For example, if training
faces used for PCA were forward-facing and test faces varied in view-
point, reconstructions would also be forward-facing, and could there-
fore only represent information that is retained across changes in
viewpoint. [Transient facial features such as emotional expression
(Nestor et al., 2011) could be varied in a similar fashion.]

Our importance map confirmed that in addition to early visual re-
gions, clusters within fusiform gyrus also predicted face components.
The localization of these clusters was consistent with what is typically
labeled as FFA. Indeed, these clusters overlapped with independently
identified group-level functional ROIs representing face-selective fusi-
form voxels. As a comparison, we confirmed that face-selective voxels
in fusiform gyrus were more important in predicting face components
than scene-selective voxels in the collateral sulcus. A number of other
functionally-defined face regions also overlapped with clusters within
the importance map: (a) medial prefrontal cortex, (b) precuneus, and
(c) angular gyrus/posterior superior temporal sulcus. These regions cor-
respond to a broader network of areas that have been associated with
various aspects of face processing (Fox et al., 2009b; Gobbini and
Haxby, 2007). Thus, our results indicate that higher-level regions previ-
ously associated with face processing contributed to successful recon-
struction of viewed faces. Notably, reconstruction from higher-level
(non-occipital) regions was not driven by color, luminance, or contrast,
as removal of this information from the images increased objective iden-
tification accuracy (whereas the opposite was true for reconstructions
generated from occipital cortex).
Method of reconstruction

Prior studies reporting neural reconstructions have used both
encoding models (Naselaris et al., 2009) and decoding models
(Miyawaki et al., 2008; Thirion et al., 2006). Encoding models attempt
to predict the pattern of brain activity that a stimuluswill elicit, whereas
decoding methods involve predicting (from brain activity) features of
the stimulus. Thus, our approach involved decoding; however, instead
of predicting relatively simple information such as local contrast values
(Miyawaki et al., 2008), here we predicted relatively complex informa-
tion that was succinctly captured by PCA component scores (i.e.,
eigenface scores).

One appealing feature of our specific reconstruction approach, rela-
tive to that of previous studies, is that our selection of stimulus features
(i.e., eigenfaces) was entirely unsupervised. That is, rather than using a
manually selected local image basis such as a set of binary patches
(Miyawaki et al., 2008) or Gabor filters (Naselaris et al., 2009;
Nishimoto et al., 2011), and without applying any semantic labels to
the images (Naselaris et al., 2009), we identified components that effi-
ciently represented face images. While the derived components are
likely to explain variance related to features such as gender, race, and
emotional expression (Figs. S6 and S7), we did not need to subjectively
define any of these categories. In fact, because wemade virtually no as-
sumptions about the type of face information that would be reflected in
patterns of brain activity, the pixelwisemaps of reconstruction accuracy
shown in Fig. 4 represent a largely unconstrained account of what parts
of the face were represented in brain activity, which would not have
been the case if we had chosen to model particular features (e.g. eyes
and mouth).

A second advantage of our PCA-based approach is that predicted
component scores for an image can be easily inverted to produce a re-
construction, meaning that our method of neural reconstruction was
very direct. That is, whereas the use of an image prior has been an im-
portant component of other studies reporting neural reconstruction of
complex visual information (Naselaris et al., 2009; Nishimoto et al.,
2011; Schoenmakers et al., 2013), here this was unnecessary. Third,
having orthogonal components (eigenfaces) avoided complications
that can arise with correlated features (i.e., that brain activity elicited
by one feature is mistaken for brain activity elicited by another feature).
Finally, our approach is computationally inexpensive because relatively
few features or components were used in our PLS algorithm compared
to the number of pixels in each image.
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Given that we used the maximum number of eigenfaces (299) to
generate reconstructions, it may be wondered whether later compo-
nents actually contributed to reconstruction accuracy. For example,
since the first two components captured 41.4% of the variance of the
training faces and appeared to carry information about skin color,
gender, and expression (where the latter two properties appeared to
covary; Figs. S6 and S7), it might have been sufficient to use these first
two components alone. However, even when the first two components
were excluded from ourmodel, identification accuracy for mean recon-
structed images in the all regions ROI remained significantly above
chance (M = 0.57; p = 0.005). Furthermore, as can be seen in Fig. 8A,
qualitative differences in the reconstructed images are apparent even
as relatively ‘late’ components are added. Indeed,while thefirst 10 com-
ponents account for themajority of the objective identification accuracy
of the reconstructions (Fig. 8B), there was a significant positive correla-
tion between identification accuracy and the number of included com-
ponents even when considering only components 11–299 (Fig. 8C).
Thus, our results suggest that neural activity predicted both highly
salient (early components) and more nuanced features (later compo-
nents) of face images.

While our results highlight the utility of PCA as a tool for extracting
face information in a fully automated, data-driven way (Turk and
Pentland, 1991), here we are not advancing the stronger position that
the brain represents faces using a linear projection onto features that
strongly resemble PCA components. Rather, it is possible that the
brain uses a wholly different (e.g., nonlinear) transformation to repre-
sent faces. However, our method of face reconstruction is based on the
idea that at least some aspects of the brain's representations of faces
will correlate with, or predict, the PCA components of faces (Gao
and Wilson, 2013). Future studies could compare different methods
for representing faces in a low-dimensional space (e.g., principal
Original 5 20 80 299 A 

Fig. 8. (A)Mean (across participant) reconstructions from the all regions ROI as a function of th
mean reconstructions from all regions ROI as a function of the number of components (eigenfa
(the other test faces), each reconstruction was compared to 329 lures (every training and test
measurement by a factor of 329/29). Thiswas not done in previous analyses because, if the test f
to chance)—but the present analysiswas not concernedwith performance relative to chance. Fo
ponents included and accuracy was 0.97. For components 11 through 299 (C), Spearman's ran
relation values cannot be compared to chance in the traditional way because the accuracies are
close to the accuracy when using 250 components). Thus, to compute a p-value for the correlati
evaluated the discrete derivative (differences between adjacent elements, which can be assum
ponents, (2) wemultiplied this by a random string of−1 and 1 values, (3) we cumulatively su
number of components, (4) steps 2–3were repeated 100,000 times, and (5) finally, we calculat
than r (the actual correlation between number of components included and accuracy). The re
creased in a roughly monotonic fashion, though the magnitude of this increase was very small
component analysis vs. independent component analysis) or could
systematically compare reconstruction of individual eigenfaces across
different brain regions as a way to probe the underlying dimensions of
the brain's representation of faces.

Our method of reconstructing face images can also be compared to
previous studies that have used decodingmethods to study face process-
ing. Previous face decoding studies have used just a handful of face iden-
tities (Anzellotti et al., 2013; Kriegeskorte et al., 2007; Nestor et al., 2011;
Verosky et al., 2013) or faces that were artificially varied along a handful
of dimensions (Gao andWilson, 2013; Goesaert and Op de Beeck, 2013).
By contrast, the present study employed naturalistic images featuring a
large number of distinct identities and was not constrained to a limited
number of selected features. Rather, our approach would not only allow
for any number of face features to be reconstructed, but would also auto-
matically select those features that explain the most variance across face
images.

Applications

Our approach has a number of direct applications. First, as we dem-
onstrate here, reconstructions can be generated and compared across
different brain regions, allowing for a strikingly direct method of
assessingwhat face information is represented in each region. Likewise,
reconstructions could also be compared across specific populations or
groups, allowing for comparison of how face representations differ
across individuals. This would be particularly relevant to disorders
such as autism that have been associated with abnormal face process-
ing. (The accuracy “heat maps”we report in Fig. 4 could be quite useful
for such comparisons.) Reconstructions of faces could also be used to as-
sess implicit biases in perception, since a face can be reconstructed in
the absence of a participant making any behavioral response to that
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image. For example, manipulations that are intended to induce racial
prejudice or social anxiety might correspond to discernable differences
in the reconstructed faces (e.g. darker skin color or more aggressive fa-
cial expression). This application is especially promising in light of the
role of high-level face processing areas in implicit biases (Brosch et al.,
2013).

Finally—and perhaps most intriguingly—our method could, in princi-
ple, be used to reconstruct faces in the absence of visual input. As noted
above, prior studies reporting neural reconstructions have largely relied
onmapping voxel activity to information at a particular retinotopic loca-
tion. However, voxels in higher-level regions (e.g., fusiform gyrus) are
likely to represent face information in a way that is invariant to position
(Kovács et al., 2008) and at least partially invariant to viewpoint
(Axelrod and Yovel, 2012). While our method requires that the training
faces be carefully aligned—so that PCA can be applied to the images—it
does not place any requirements on the format of the test images. For ex-
ample, had the test images been twice the size of the training images, re-
constructions based on ‘higher-level’ representations would still succeed
—the reconstructed image would simply be projected into the same
space as the training images. Similarly, the current approach could be ap-
plied, without any modification, to attempt reconstructions of faces that
were imagined, dreamed, or retrieved frommemory. Indeed, recent stud-
ies have found that the visual content of imagery (Stokes et al., 2011),
memory retrieval (Kuhl et al., 2011; Polyn et al., 2005), and dreams
(Horikawa et al., 2013) are represented in higher-level visual areas—
areas that overlap with those that supported face reconstruction in the
present study. Thus, extending the present methods to reconstruction
of off-line visual information represents a truly exciting—yet theoretically
feasible—avenue for future research.
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