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The hippocampalmemory system is thought to alternate between two opposing processing states: encoding and
retrieval. When present experience overlaps with past experience, this creates a potential tradeoff between
encoding the present and retrieving the past. This tradeoff may be resolved by memory integration—that is, by
forming a mnemonic representation that links present experience with overlapping past experience. Here, we
used fMRI decoding analyses to predict when – and establish how – past and present experiences become inte-
grated in memory. In an initial experiment, we alternately instructed subjects to adopt encoding, retrieval or in-
tegration states during overlapping learning. We then trained across-subject pattern classifiers to ‘read out’ the
instructedprocessing states from fMRI activity patterns.We show that an integration statewas clearly dissociable
from encoding or retrieval states. Moreover, trial-by-trial fluctuations in decoded evidence for an integration
state during learning reliably predicted behavioral expressions of successful memory integration. Strikingly,
the decoding algorithm also successfully predicted specific instances of spontaneous memory integration in an
entirely independent sample of subjects for whom processing state instructions were not administered. Finally,
we show that medial prefrontal cortex and hippocampus differentially contribute to encoding, retrieval, and in-
tegration states: whereas hippocampus signals the tradeoff between encoding vs. retrieval states, medial pre-
frontal cortex actively represents past experience in relation to new learning.

© 2015 Elsevier Inc. All rights reserved.
Introduction

The hippocampal memory system is thought to alternate between
two opposing processing states: encoding and retrieval. The idea of op-
posing encoding and retrieval states is central to computational models
of episodic memory (Hasselmo et al., 2002; O'Reilly and McClelland,
1994) and is supported by experimental evidence across levels of anal-
ysis. For example, encoding and retrieval are associated with distinct
electrophysiological activity states in rodents (Douchamps et al., 2013;
Hasselmo et al., 2002; Kunec et al., 2005; Siegle and Wilson, 2014)
and humans (Rizzuto et al., 2006), and human fMRI studies have iden-
tified distinct activity patterns corresponding to encoding and retrieval
(Donaldson et al., 2001; Duncan et al., 2014; Eldridge et al., 2005). How-
ever, the opposition between encoding and retrieval states poses an im-
portant problemwhenever new learning overlaps with past experience
(O'Reilly and McClelland, 1994). In such cases, the overlap can trigger
retrieval of past experience (Kuhl et al., 2010), creating a potential
tradeoff between remembering the past and encoding the present. In-
deed, understanding the tradeoff between encoding and retrieval states
gy, University of Cambridge,
during the learning of overlapping experiences has been of central in-
terest to computational models of episodic memory (O'Reilly and
McClelland, 1994).

Oneway to avoid a tradeoff between encoding and retrieval is by in-
tegrating present experience into existing memories of past experience.
For example, a present conversation with a friend may trigger the re-
trieval of a past conversation with that friend; integration achieves a
balance between remembering this past conversation and encoding
the present conversation by allowing the present conversation to be in-
corporated into an existing representation of the past conversation.
Memory integration has important behavioral consequences: it can
allow for novel inferences concerning the relationship between tempo-
rally discrete events (Preston and Eichenbaum, 2013; Zeithamova et al.,
2012a,b), it has been associated with reduced interference-related for-
getting (Anderson andMcCulloch, 1999), and it can facilitate new learn-
ing (Schlichting and Preston, 2014; Tse et al., 2007). But when and how
do memories become integrated?

Neuroimaging studies have shown that memory integration occurs
‘online’ – that is, during new learning (Shohamy and Wagner, 2008;
Wimmer and Shohamy, 2012; Zeithamova and Preston, 2010) – and
that it is related to the reactivation of past experience during new learn-
ing (Zeithamova et al., 2012a,b). Behavioral studies have shown that
subtle manipulations of learning context can influence the probability
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that present experiencewill be integratedwith past experience by alter-
ing the relative balance between encoding and retrieval states (Duncan
et al., 2012). Intuitively, integration requires avoiding a processing state
that is either ‘pure encoding’ or ‘pure retrieval’ as both extremes would
prevent present experience from being related to past experience. Here,
we asked whether memory integration is associated with a processing
state during learning that can be discriminated from encoding and re-
trieval states based on neural activity patterns. To the extent that mne-
monic processing states can be ‘read out’ from neural activity patterns,
can these read-outs be used to predict the specific experiences that
will become integrated in memory?

We conducted a human fMRI experiment in which subjects learned
initial (old) associations followed by overlapping (new) associations.
During learning of the new associations we provided instructions that
alternately biased subjects' processing toward encoding of current ex-
perience (the new association), retrieval of past experience (the old as-
sociation), or integration of past with present. We used pattern
classification analyses to test whether the processing states (encoding,
retrieval, integration) elicited discriminable (i.e., decodable) patterns
of neural activity. As noted above, prior evidence indicates that
encoding and retrieval are associated with distinct profiles of neural ac-
tivity (Donaldson et al., 2001; Douchamps et al., 2013; Duncan et al.,
2014; Eldridge et al., 2005; Hasselmo et al., 2002; Kunec et al., 2005;
Rizzuto et al., 2006; Siegle and Wilson, 2014), but these studies have
not directly attempted to read out processing states from patterns of
neural activity on individual learning trials. More importantly, prior
studies have not tested whether an ‘integration state’ can be discrimi-
nated from encoding and/or retrieval states.

Critically, to the extent that an integration state could be discrimi-
nated from encoding/retrieval states, we sought to validate this result
by relating it to behavior. To this end, we derived from our pattern clas-
sifier the strength of evidence for an integration processing state on each
learning trial and then asked whether that evidence predicted perfor-
mance on a subsequent (and un-anticipated) behavioral integration
test. As an even stronger validation step, we also collected data in an ad-
ditional sample of subjects that completed the same learning paradigm
except that we did not instruct/bias processing states during learning.
Rather, any fluctuations in processing states were completely subject-
driven. This allowed us to test whether a classifier that was trained on
data from the first sample of subjects (‘instructed subjects’) would
successfully transfer to the second sample of subjects (‘uninstructed
subjects’). That is, could we predict specific instances of memory inte-
gration in the uninstructed subjects based onwhat the classifier learned
from the instructed subjects? This allowed us to testwhether spontane-
ous memory integration is associated with a pattern of neural activity
that generalizes across subjects.

In separate analyses, we also measured (again, using decoding
methods) the degree to which older memories were reactivated during
new learning and tested whether reactivation predicted memory inte-
gration (Shohamy and Wagner, 2008; Wimmer and Shohamy, 2012;
Zeithamova et al., 2012a,b). Finally, although our primary analyses
were based on whole-brain pattern classification analyses, we also re-
port targeted, secondary analyses that compared regions that have pre-
viously been implicated in memory integration – i.e., medial prefrontal
cortex (MPFC) and the hippocampus (Shohamy andWagner, 2008; van
Kesteren et al., 2013; Zeithamova et al., 2012a,b) – in order to clarify
their respective contributions to memory integration.

Methods

Participants

Twenty-one subjects (17 female; mean age= 23.04) participated in
the ‘instructed’ version of the experiment and another 8 (6 female;
mean age=21.13) participated in the ‘uninstructed’ version. Two addi-
tional subjects (one instructed, one uninstructed)were excluded due to
technical errors. Of the 21 instructed subjects, one was excluded only
from analyses related to the direct association test (see below) due to
an error saving the data. Subjects were recruited from the New York
University community, were 18–35 years of age, right-handed, native
English speakers, had normal or corrected-to-normal vision, and had
no history of neurological disorders. Informed consentwas obtained ac-
cording to procedures approved by theNewYork University Committee
on Activities Involving Human Subjects. Subjects received payment for
their involvement in the study.

Materials

Stimuli consisted of 144 words and 288 pictures. Word length
ranged from 3 to 11 letters (M=5.95). The pictures consisted of photo-
graphs of famous people (e.g., Tom Cruise; faces), famous locations
(e.g., Taj Mahal; scenes), and common objects (e.g., wrench; objects).
All word–picture pairings and the assignment of words and pictures
to conditions were randomized for each subject.

Procedures

Both the ‘instructed’ and the ‘uninstructed’ versions of the experi-
ment consisted of four phases: acquisition, new learning, direct associa-
tion test, and integration test. Only the acquisition and new learning
phases were conducted during fMRI scanning. As detailed below, the
only differences between the instructed and uninstructed versions
were in (a) the instructions and trial timing during the new learning
phase and (b) the order of the direct association and integration tests.

Acquisition and new learning phases
Subjects completed 8 fMRI scan runs, with each run consisting of an

acquisition round followed by a new learning round. None of the mate-
rials (words or pictures) repeated across scan runs. In acquisition
rounds, subjects studied associations between words and pictures. Pic-
tures were drawn from three visual categories: faces, scenes, or objects.
Each trial (4 s) consisted of a word presented directly above a picture.
After presentation of the word–picture pair there was an 8 s inter-trial
interval (ITI) which included a fixation cross followed by presentation
of three single-digit numbers and then another fixation cross. For each
number that was presented, subjects were required to indicate via
button-press whether it was odd or even. This task was included in
order to reduce continued rehearsal of the pairs during the ITI. There
were a total of 18 trials in each acquisition round and the procedures
for this roundwere identical across the instructed and uninstructed ver-
sions of the experiment.

After each acquisition round, subjects completed a new learning
round. For the instructed version, a screen first instructed subjects to
“Get Ready” (10 s), followed by a reminder of the shape-to-instruction
mappings (8 s) and a fixation cross (4 s). For the uninstructed version,
a “Get Ready” screen (6 s) was followed by a fixation cross (4 s). For
both versions of the experiment, the new learning round began imme-
diately after the fixation cross. In each new learning round, all of the
words from the immediately preceding acquisition roundwere present-
ed again, but were pairedwith a newpicture. The ‘new’ picture present-
ed with each word was always from a different category than the ‘old’
picture that had appeared with that word in the acquisition round. In
the instructed version, each word–picture pair was presented for 2 s
and was followed by a shape cue (square, circle, or triangle), which
remained on the screen for 6 s. The shape cue instructed subjects to ei-
ther rehearse the old association only (retrieve condition), rehearse the
new association only (encode condition), or rehearse and try to link the
new and old associations (integrate condition). The assignment of shape
cues to instructions was counterbalanced across participants. Subjects
had time tomemorize the shape-to-instruction assignment prior to en-
tering the scanner. In the uninstructed version, each word–picture pair
was presented for 4 s and was not followed by a shape cue. Rather,
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subjects were simply instructed to learn each pair for a later test
(equivalent to the encoding condition for the instructed subjects). For
both the instructed and uninstructed versions of the experiment,
there was an 8 s ITI between trials, identical to the acquisition phase
(including the odd/even task).
Post-tests
Upon exiting the scanner, subjects completed one post-test that

measured memory for the previously studied word–picture pairs
(direct association test) and another that measured the ability to ‘re-
member’ across pairs (integration test).

In the direct association test, each trial presented subjects with a
word directly above 6 picture options. One of the pictures had previous-
ly been pairedwith the givenword (target) and the other 5 pictures had
been paired with a different word (alternatives). Each trial either tested
memory for an old pair (from the acquisition rounds) or a new pair
(from the new learning rounds). Old and new trials were pseudo-
randomly intermixed, but the distinction between old and new trials
was not explicitly relevant to subjects: their task was simply to choose
which picture, from the set of 6 options, had previously been paired
with theword. For trials that tested an old pair, all 5 alternative pictures
were old pictures from the same visual category as the target. Likewise,
for trials that tested a new pair, all 5 alternative pictures were new pic-
tures from the same visual category as the target. Subjects had 6 s to se-
lect the target picture via mouse click on each trial.

The integration test assessed subjects' ability to link pictures that
shared a common word cue. On each trial of the integration test, sub-
jects were presented with a picture from the new learning phase and
attempted to ‘remember’ the old picture that shared a word cue with
the new picture, despite never having studied the old and new pictures
together and not having beenwarned that their memorywould be test-
ed in this way. Each trial consisted of two steps. In the first step
(category memory) participants were presented with three category la-
bels (face, scene, object) beneath the new picture and had to select
the visual category to which the corresponding old picture belonged.
Subjects had 4 s to make the category choice via mouse click. Immedi-
ately after their response (or when 4 s elapsed) subjects were shown
a set of 4 pictures that tested their item memory (1 target + 3 alterna-
tives). Here, subjects were required to select the specific old picture
(target) that was indirectly associated with the new picture (i.e., the
old picture that shared aword cuewith the new picture). The 3 alterna-
tiveswere always from the same category as the target picture andwere
drawn from the set of old pictures. The itemmemory stepwas included
irrespective of whether subjects selected the correct category label in
the prior step. The specific pictures displayed during the item step
were independent of the participants' accuracy on the category step.
That is, if a subject selected ‘face’ at the category step, but the target
was in fact a ‘scene,’ then the subject would be shown 4 ‘scenes’
(i.e., pictures from the correct category) at the item step. Subjects had
3 s to choose the correct picture via mouse click. Note: the time limits
placed on the integration test were challenging, but were intended to
reduce the probability that subjects would ‘solve’ these trials by sepa-
rately recalling individual pairs as opposed to recalling pre-existing in-
tegrated representations.

In the instructed version of the experiment, the direct association
test preceded the integration test; while thismeans that the direct asso-
ciation test may have, in some way, influenced performance on the in-
tegration test, this should only have served as a source of noise that
would work against our ability to predict performance on the integra-
tion test. For the uninstructed version, because we were specifically in-
terested in predicting performance on the integration test (in order to
replicate a finding from the instructed version), we reversed the order
and conducted the integration test before the direct association test to
reduce any potential influence that the direct association test might
have on integration test performance.
fMRI acquisition

fMRI scanning was performed on the 3 T Siemens Allegra head-only
scanner at the Center for Brain Imaging at New York University using a
Siemens head coil. Structural images were collected using a T1-
weighted protocol (256 × 256 matrix, 176 1-mm sagittal slices). Func-
tional images were acquired parallel to the anterior commissure–
posterior commissure axis using a single-shot EPI sequence (repetition
time = 2 s; echo time = 30 ms; field of view = 192 × 240 mm, flip
angle = 82°, bandwidth = 4165 Hz/px and echo spacing = 0.31 ms).
For all functional scanning, we obtained 35 contiguous oblique-axial
slices (3 × 3 × 3-mm voxels) per volume. Field map and calibration
scans were used to improve functional-to-anatomical image co-
registration.

Acquisition and new learning rounds occurred in alternation, with
each fMRI scan (block) consisting of one round of acquisition followed
by one round of new learning. In the instructed version of the experi-
ment a total of 268 volumes were collected (8 m 36 s) during each
block. Of the 268 volumes, the first 5 were discarded, the next 108
corresponded to the acquisition round, the next 11 included a momen-
tary break and a reminder of the mapping of shapes to instructions
(5 volumes for a “Get Ready” screen, 4 volumes for instructions, 2 vol-
umes for a fixation cross), and the final 144 corresponded to the new
learning round. For the uninstructed participants a total of 226 volumes
were collected in each block (7 m 32 s). Of the 226 volumes, the first 5
were discarded, the next 108 corresponded to the acquisition round, the
next 5 included a momentary break between the acquisition and new
learning rounds (3 volumes for a “Get Ready” screen, 2 volumes for a
fixation cross), and the final 108 corresponded to the new learning
round. Note: fewer volumes separated the acquisition and new learning
phases for uninstructed participants than instructed participants, as
there were no shape-to-instruction mappings of which to remind the
uninstructed subjects. Likewise, the length of the new learning round
was shorter for the uninstructed subjects because the instruction cues
were not presented.

fMRI preprocessing

Data preprocessing and analysis was performed using SPM8
(Wellcome Department of Cognitive Neurology, London, United
Kingdom), FSL (FMRIB's Software Library, Oxford, United Kingdom)
and customMatlab (TheMathWorks, Natick, MA) routines. Preprocess-
ing procedures involved corrections for head motion, coregistration of
functional to anatomical images (using a registration procedure that
aligned both functional and anatomical images to a calibration scan),
an unwarping procedure, normalization to the Montreal Neurological
Institute (MNI) gray matter template, and spatial smoothing using a
5-mm full-width/half-maximum Gaussian kernel. We chose to smooth
the data, using a moderate kernel, to benefit across-subject decoding;
however, we did not expect this to compromise within-subject
decoding (Kamitani and Sawahata, 2010).

Pattern classification analyses

Pattern classification analyses were applied to ‘raw’ (unmodeled)
fMRI data. All pattern classification analyses were performed using
sparse multinomial logistic regression implemented with the Princeton
Multi-Voxel Pattern Analysis Toolbox (http://www.pni.princeton.edu/
mvpa) and custom Matlab routines.

fMRI preprocessing for pattern classification analyses

In addition to the standard fMRI preprocessing steps, several addi-
tional preprocessing steps were applied to the fMRI data before pattern
classification analyses were performed. Functional data were high-pass
filtered (0.01 Hz), detrended, and z-scored within scan. All statistical
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analyses and inferences were based on fMRI data that were temporally
compressed so that each trial corresponded to a single spatial pattern.
For trials in the acquisition phase, the 3rd and 4th volumes (4–8 s post
word–picture pair onset) were averaged. For trials in the new learning
phase, volumes 4–6 were averaged for the instructed version and vol-
umes 3–5 were averaged for the uninstructed version. A different time
window was used for the uninstructed subjects simply to account for
the fact that no instruction cue was shown; thus, the window either
corresponded to 4–10 s post instruction onset (instructed version) or
4–10 s post trial onset (uninstructed version). A wider temporal win-
dowwas used for trials in thenew learningphase than in the acquisition
phase to account for the fact that retrieval and integration processes
should take longer to unfold (during new learning) than encoding pro-
cesses (during acquisition). The temporal windows and averaging used
here were selected a priori based on our previous studies (Kuhl and
Chun, 2014; Kuhl et al., 2011, 2013) and were therefore not ‘optimized’
to find the effects of interest. After a single spatial pattern was obtained
for each trial and only relevant trials were selected, additional z-scoring
was performed (again, as in our previous work). First, z-scoring was
performed across all voxels within each volume (i.e., mean response
for each volume on each trial = 0), which had the effect of expressing
the activity of a given voxel on a given trial relative to activity in other
voxels. Second, z-scoring was performed, for each voxel, across all trials
within each phase. For example, themean response for each voxelwith-
in the acquisition phase would equal 0. This had the effect of expressing
the activity of a given voxel on a given trial relative to the response of
that voxel on other trials from the same phase.
Decoding mnemonic processing states
Decoding of mnemonic processing states was performed using

across-subject pattern classification. There were two motivations for
using across-subject classification. First, we cued different mnemonic
processing states using shapes, and the assignment of shape to instruc-
tion was fixed within subjects but counterbalanced across subjects.
Thus, performing classification across subjects deconfounded shape
and processing instruction. Second, we were specifically interested in
whether a classifier trained using ‘instructed’ subjects would generalize
to a set of ‘uninstructed’ subjects. Decoding of processing stateswasper-
formed using three-way classifiers (encode vs. retrieve vs. integrate) as
well as using separate pairwise classifiers (encode vs. retrieve, encode
vs. integrate, retrieve vs. integrate).

For the instructed subjects, across-subject classification used leave-
one-subject-out cross-validation. Specifically, the pattern classifier was
trained on data from 20 of the 21 subjects, and tested on data from
the held-out subject. This was repeated iteratively until each subject's
data were ‘held-out’ once. As an example, for the three-way classifica-
tion of processing state, the classifier would be trained on a total of 20
(subjects) * 144 (trials per subject) = 2880 total trials and tested sepa-
rately on each of 144 trials for the held-out subject. For the uninstructed
subjects, across-subject classification was performed by training the
classifier on all 21 of the instructed subjects (3024 trials) and testing
the classifier on each trial for each of the uninstructed subjects.

As an intuitive measure of classifier performance, we report classi-
fication accuracy for decoding of processing states, where chance ac-
curacy was either 33.3% (for three-way classification) or 50% (for
two-way classification). Note: classification accuracy was not relevant
for the uninstructed version, since there was no correct (instructed)
processing state in these subjects. For all analyses in which
classifier-based evidence was used to predict behavioral performance,
classifier evidence was defined as the log odds of the classifier output.
More specifically, if x represents the classifier output corresponding
to a given condition on a given trial, classifier evidence was calculated
as: log[x/(1 − x)]. This log transformation step was included in order
to correct for non-normality in the distribution of raw classifier
output.
Decoding reactivation
To test for reactivation of old associations during the new learning

phase, subject-specific classifiers were trained to learn visual category
information (face vs. scene vs. object) based on trials in the acquisition
phase and were then tested on each trial in the new learning phase. As
with the process-based classifiers, classifier evidencewas defined as the
log odds of the classifier's output. For each trial, one visual category
corresponded to the new picture, one category corresponded to the
old picture, and one category served as a baseline (neither old nor
new). To obtain a measure of reactivation, classifier evidence for the
baseline category was subtracted from classifier evidence for the cate-
gory of the old picture. Thus, if classifier evidence corresponding to
the old picture was greater than evidence for the baseline picture, this
produced a positive reactivation value (Kuhl et al., 2012; Polyn et al.,
2005). If classifier evidence corresponding to the old picture was equal
to evidence for the baseline category, the reactivation value would be
0. All of the reactivation-based analyses we report are based on these
continuous measures of the strength of reactivation.

Anatomical brain masks

Pattern classification analyses were restricted to specific brain re-
gions using standard-space anatomical masks. The anatomical masks
or regions of interest (ROIs) were created using the Anatomical Auto-
matic Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). A ‘whole
brain’mask was created that included all of prefrontal cortex, posterior
parietal cortex, temporal cortex, occipital cortex, and hippocampus. For
all of our core analyses, we used this whole brain mask. However, be-
cause a secondary aim was to characterize how individual brain areas
contribute to memory integration, we also divided the whole brain
mask into twelve sub-regions according to the AAL labels: inferior fron-
tal gyrus, middle frontal gyrus, superior frontal gyrus, medial prefrontal
cortex (including anterior cingulate cortex), orbitofrontal cortex, inferi-
or parietal lobule (including AAL regions corresponding to angular and
supramarginal gyri), superior parietal lobule, medial parietal cortex, lat-
eral temporal cortex, ventral temporal cortex, occipital cortex, and hip-
pocampus. We favored an approach using relatively broad ROIs as
opposed to searchlight analyses because (a) here, it was not of interest
to localize effects to highly specific anatomical coordinates but, instead,
to characterize information at the level of broad anatomical regions, and
(b) the greater anatomical specificity afforded by searchlight analyses
carries a cost in the form of more stringent corrections needed for mul-
tiple comparisons.

Statistical analyses

Statistical analyses were performed using R, SPSS and Matlab. We
report results from paired-sample and independent sample t-tests, re-
peated measures ANOVA, and logistic regression. t-tests were two-
tailed except in the following situations where there were obvious
directional predictions: (a) when pattern classification accuracy was
compared to chance, (b) when pattern classifier evidence was com-
pared to a ‘baseline level’ and (c) when a statistical test was an internal
replication of another result.

Results

Behavioral measures of associative memory

After completing all of the acquisition and new learning rounds in
the scanner (Figs. 1A–B), subjects completed the direct association
and integration tests. The direct association test allowed us to assess
whether processing instructions during the new learning phase influ-
enced participants' subsequent memory for the old pairs and/or new
pairs. Trials from the direct association test were scored as ‘correct’ if
subjects selected the target picture from the set of 6 choices within



Fig. 1. Experimental design and behavioral results. (A) During acquisition rounds (8 total), subjects studied word–picture pairs (old pairs; 4 s each). Pictures were drawn from three cat-
egories: faces, scenes, objects. (B) Each acquisition roundwas followed by a new learning round inwhichwords from the immediately preceding acquisition roundwere pairedwith new
pictures (new pairs, 2 s each). After eachword–picture pair disappeared, a shape cue (6 s) instructed participants to: encode the new pair, retrieve the old pair, or integrate the old and new
pairs. (C) After all of the acquisition/new learning rounds, subjects completed a surprise integration test. On each trial, a picture from the new learning rounds was presented and subjects
attempted to remember the corresponding old picture (i.e., the picture that shared the sameword cue). The integration test consisted of two steps: first participants indicated the category
of the old picture (object, face, or scene; 4 s maximum), and then subjects indicated the specific old picture from a set of 4 choices (all from the same visual category; 3 s maximum).
(D) Instructions during new learning (encode, retrieve, integrate) significantly influenced accuracy in selecting the specific picture (F2,40 = 7.89, p = .001); there was a similar but
non-significant pattern for the category-level decision (F2,40 = 1.43, p = .25). Error bars correspond to standard error of the mean.
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the time limit (seeMethods). The percentages of correct trials as a func-
tion of pair type (old vs. newpairs), processing instruction (retrieve, en-
code, integrate) and experiment (instructed vs. uninstructed) are
reported in Table 1. Because subjects sometimes failed to make a re-
sponse in the allotted time (old pairs, instructed subjects: M = 5.2%;
old pairs, uninstructed subjects: M = 5.6%; new pairs, instructed sub-
jects: M = 12.9%; new pairs, uninstructed subjects: M = 6.3%), a true
measure of ‘chance performance’ was not available. However, relative
to a conservative chance estimate of 16.6% (because 6 picture options
were available to choose from), accuracy for both the old and new
pairs was above chance in each instruction condition for the instructed
subjects (t19's N 2.3, p's b .05) as well as for the uninstructed subjects
(t7's N 3.3, p's b .05). For the instructed subjects, processing instructions
significantly influenced memory for the new pairs (F2,38 = 10.23,
p b .005, Greenhouse–Geisser corrected), but not for the old pairs
(F b 1). For the new pairs, accuracy was higher in the encode condition
(M = 38.4%) than integrate condition (M = 34.1%; t19 = 2.13, p =
.047), and accuracy in the integrate condition was, in turn, higher than
in the retrieve condition (M = 24.3%; t19 = 2.74, p = .01). Thus, pro-
cessing instructions – which appeared immediately after new pairs
were presented – significantly influenced later memory for the new
pairs but did not influence memory for the previously studied old pairs.

The integration test probed memory for associations across overlap-
ping pairs (associations that were never directly studied; Fig. 1C). Each
integration test trial consisted of two steps: a category-level decision
and an item-level decision. Table 2 displays the percentage of correct
trials for each step, as well as the percentage of trials where both steps
were correct, as a function of processing instruction (retrieve, encode,
integrate) and experiment (instructed vs. uninstructed). Because sub-
jects sometimes failed tomake a response in the allotted time (category
decision, instructed subjects:M=6.4%; category decision, uninstructed
subjects:M=3.5%; item decision, instructed subjects:M=19.7%; item
decision, uninstructed subjects: M = 6.3%), a true measure of chance
performance was not available. However, relative to a chance estimate
of 33.3% for the category decision (because 3 options were available),
Table 1
Direct association test performance.

Old pairs New pairs

Mean (SD) Mean (SD)

Instructed Retrieve 64.9% (21.5%) 24.3% (14.4%)
Encode 63.1% (22.7%) 38.4% (17.5%)
Integrate 64.3% (23.4%) 34.1% (17.4%)
All trials 64.1% (22.1%) 32.3% (14.3%)

Uninstructed All trials 49.5% (18.3%) 37.9% (18.0%)
performance was above chance for each instruction condition in the
instructed subjects (t7's N 3.7, p's b .005) and for the uninstructed sub-
jects (t7 = 3.22, p = .01). For the item decision, relative to a conserva-
tive chance estimate of 25% (because 4 options were available),
accuracy was above chance for the instructed subjects in the integrate
condition (t20 = 3.35, p = .003) and encode condition (t20 = 2.37,
p = .03), but not the retrieve condition (t20 = .22, p = .83); accuracy
for the uninstructed subjects trended toward being above 25% (t7 =
1.61, p = .15). Notably, accuracy for the item decision was higher if
the category decision was correct vs. incorrect (timed out or error):
for instructed subjects, this difference was highly significant (M =
39.0% vs. M = 25.3%, t20 = 5.30, p = .00003), and a similar trend was
observed for uninstructed subjects (M = 34.9% vs. M = 26.8%, t7 =
2.00, p = .09). Thus, although the category and item decisions were
fully independent in terms of the task structure, accuracy of the catego-
ry decision was predictive of accuracy of the item decision.

For the instructed subjects, processing instructions had a modest,
non-significant influence on integration test accuracy at the category
level (F2,40 = 1.43, p= .25; Fig. 1D), but a robust influence on accuracy
at the item level (F2,40 = 10.32, p = .0002) and on the probability of
selecting the correct category and item (F2,40 = 7.89, p = .001;
Fig. 1D). Across all three measures, accuracy was numerically greatest
in the integrate condition and lowest in the retrieve condition. That is,
although the integrate and retrieve conditions each required that sub-
jects ‘think back’ to the old association immediately after presentation
of the new association, the integrate condition yielded better perfor-
mance on the subsequent integration test (category and item: M =
22.1%) than did the retrieve condition (category and item:M = 13.6%;
t20 = 3.16, p = .005). Thus, simply thinking back to the old pair after
seeing the new pair was not sufficient to produce the same level of per-
formance on the integration test that was observed with the integrate
instruction. On the other hand, accuracy was only modestly higher for
the integrate than encode conditions (category and item: t20 = 1.13,
p = .27), indicating that the difference between these conditions was
more subtle.
Table 2
Integration test performance.

Category Item Category & item

Mean (SD) Mean (SD) Mean (SD)

Instructed Retrieve 42.8% (11.5%) 25.6% (12.2%) 13.6% (10.9%)
Encode 46.3% (12.0%) 32.9% (15.3%) 19.9% (12.1%)
Integrate 46.8% (12.3%) 37.3% (16.8%) 22.1% (14.8%)
All trials 45.3% (9.7%) 31.9% (13.2%) 18.6% (11.3%)

Uninstructed All trials 44.3% (9.6%) 31.3% (11.0%) 16.5% (11.2%)
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Decoding mnemonic processing states

Having established that processing instructions influenced behav-
ioral performance, we next tested whether processing states could be
decoded from fMRI activity patterns (for the instructed subjects). That
is, could we classify whether a given trial was associated with an en-
code, retrieve, or integrate instruction? To test this, we used fMRI activ-
ity patterns from the period immediately following the instruction cue
(see Methods). Notably, classification was performed using leave-one-
subject-out cross validation, where the classifier was trained, on each
cross validation fold, to ‘learn’ the mapping of instruction condition to
fMRI activity patterns based on 20 out of 21 subjects and then tested
on each trial from the held-out subject (Fig. 2A). The motivation for
using across-subject classification was two-fold: (1) this approach
would yield classifiers that could potentially predict processing states
in new, independent subject samples, and (2) because our paradigm
conveyed instructions via shape cues (Fig. 1B) – and because the map-
ping of instruction to shape cue was fixed within subjects but
counterbalanced across subjects – an across-subject approach avoided
the possibility of simply decoding the shape that subjects were shown
(i.e., circle vs. triangle vs. square). Thus, by design, our classifier could
only succeed in decoding processing states to the extent that instruc-
tions elicited activity patterns that were consistent across subjects.

Using a (near) whole brain mask consisting of prefrontal, parietal,
temporal, and occipital cortex, as well as the hippocampus (see
Methods), three-way classification of processing instructions (encode
vs. retrieve vs. integrate; chance accuracy = 33.3%) was significantly
above chance (M = 40.6%, SD = 5.2%; t20 = 6.46, p b 1.4 × 10−06,
one-tailed t-test; Fig. 2B). Notably, thewhole-brain classifier significant-
ly out-performed each of the sub-regions that comprised the mask
(t20's N 2.1, p's b .05; Fig. 2C), indicating that the classifier made use of
broadly distributed information. The distribution of voxels maximally
active for each processing state can be seen in Supplementary Fig. 1.

Because we were specifically interested in the distinction between
an integration state vs. encoding/retrieval states, we also separately
tested pairwise classifiers: encode vs. retrieve, integrate vs. encode,
and integrate vs. retrieve. Using the whole-brain mask, classification
Fig. 2. Decoding mnemonic processing states. (A) State decoding was performed using leave-o
instruction received on each trial (retrieve vs. encode vs. integrate) using data from20/21 subjec
(for eachpair of processing states) for thewhole brainmask. (C) Three-way classification accura
correspond to standard error of the mean. Notes: ** p b .005, one-tailed t-test; IFG = inferior f
prefrontal cortex; OFC=orbitofrontal cortex; LTC= lateral temporal cortex; VTC= ventral tem
lobule; MPAR = medial parietal cortex; OCC = occipital cortex.
accuracy was above chance for each pair of classifiers (t20's N 3.2,
p's b .005, one-tailed t-tests) and classification accuracy did not signifi-
cantly differ across the three pairwise classifiers (F2,40 = 1.98, p= .15).
Thus, each of the three processing instructions elicited distinct, and
broadly distributed, neural activity patterns that generalized across
subjects.

Predicting memory outcomes by decoding processing states

The preceding results indicate that we were able to decode the pro-
cessing states subjects engaged on individual trials in the new learning
phase. Of particular importance, integrate trials could be discriminated
from encode/retrieve trials based on the neural activity patterns they
evoked. We next asked whether we could use classifier-derived evi-
dence for processing states to predict when individual memories
would be integrated. In other words, when a classifier ‘detected’ strong
evidence for integration during a particular new learning trial, did this
correspond to higher accuracy on the corresponding trial in the post-
scan integration test? As noted above, processing instructions influ-
enced behavioral performance on the integration test; thus, the critical
question is whether the classifier could predict performance on the in-
tegration test when controlling for the instructions that subjects actual-
ly received on each trial. Specifically, did variability in the strength of
classifier evidence within each instruction condition relate to perfor-
mance on the integration test?

To test for a relationship between classifier-derived evidence for in-
tegration and performance on the integration test, we applied logistic
regression analyses for each of the instructed subjects wherein integra-
tion success (a binary measure based on post-test performance) was
regressed upon classifier evidence from each trial during the new learn-
ing phase. Classifier evidence was derived from the three-way (encode
vs. retrieve vs. integrate) whole-brain classifier. A total of nine regres-
sion analyses were run for each subject, reflecting separate analyses
for each combination of form of evidence (encode evidence, retrieve ev-
idence, integrate evidence) and instruction condition (encode trials, re-
trieve trials, integrate trials). The resulting beta values were then
averaged across instruction conditions resulting in three mean beta
ne-subject-out cross-validation, in which classifiers were iteratively trained to decode the
ts and then tested on each trial for the held-out subject. (B) Pairwise classification accuracy
cy in sub-regionmasks. Dashed red line=performance ofwhole brain classifier. Error bars
rontal gyrus; MFG= middle frontal gyrus; SFG = superior frontal gyrus; MPFC = medial
poral cortex; HIPP=hippocampus; IPL= inferior parietal lobule; SPL= superior parietal
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values per subject that reflected the strength of the relationship be-
tween classifier evidence for each processing state and performance
on the integration test. Critically, because the regression analyses were
always separately run within each instruction condition, the regression
was unbiased by (i.e., controlled for) any differences in performance
that were related to the actual instructions. The mean beta values for
each subject were then compared to a test value of 0 (i.e., no relation-
ship). Although our predictionwas that integrate evidencewould predict
performance on the integration test, for comparison we also tested
whether encode and/or retrieve evidence predicted performance on
the integration test.

One caveat for this analysis is that there were multiple ways in
which ‘success’ on the integration test could be defined. Specifically,
the integration post-test consisted of two steps: a category-level deci-
sion and an item-level decision (Fig. 1C). Because the mean percentage
of trials with category + item level accuracy was relatively low, and
resulting bin sizes for correct trials were therefore quite small for
some subjects, we chose to define successful integration as trials on
which subjects made accurate category-level responses, regardless of
whether or not subjects selected the specific item correctly. With this
definition, a mean of 45.3% of the trials were associated with successful
integration and 54.7%with unsuccessful integration. Although this divi-
sion of trials was ‘blind’ to accuracy at the item-level, item-level accura-
cy was, as noted above, much higher when subjects were accurate
relative to inaccurate at the category level.

There was a significant, positive relationship between classifier-
based evidence for integration and performance on the integration
test (t20 = 2.26, p= .04; Fig. 3A). Thus, even when removing the effect
that instructions had on behavior, decoded evidence for an integration
Fig. 3. Predicting integration. (A) Classifier evidence for each processing state (i.e., retrieve evid
the post-scan integration test. Separate logistic regression analyses were performed for each su
sents the mean beta values from the regression analyses. Performance on the integration test w
learning. (B)A classifierwas trained on data from the full sample of ‘instructed’ subjects and app
the uninstructed subjectswas then used to predict performance on the integration test (as inA).
integration test. (C) The across-subject correlation between percentage of new learning trials l
integration test was marginally significant [data are collapsed across instructed (black) and uni
ison]. (D) Same as (C) except that integration test performance (y-axis) reflects mean category
bining across instructed (black) and uninstructed (green) samples]. Among the small sub-grou
between classifier-derived evidence for an integration state during new learning and category+
tailed t-test was used for (A), but a one-tailed t-test was used for (B) given that the analysis w
state during new learning predicted that overlapping events would be
integrated in memory. Importantly, performance on the integration
test was not predicted by classifier evidence for a retrieval state
(t20 = −1.38, p = .18) or an encoding state (t20 = −0.39, p = .72).
[Indeed, integrate evidence better predicted subsequent integration
performance than did retrieve evidence (t20= 2.21, p= .04)]. Likewise,
classifier evidence for an integration state did not predict performance
(either positively or negatively) for the old associations or new associa-
tions, as measured by the direct association test (t19's b 1.4, p's N .2; see
Supplementary Figs. 2B–C). Thus, there was a selective relationship be-
tween classifier-derived evidence for an integration state and perfor-
mance on the integration test.

It is notable that, although integration putatively requires that past
experience be retrieved/reactivated during new learning, evidence for
a retrieval state tended to negatively predict performance on the inte-
gration test (Fig. 3A). Presumably, this is because a ‘pure’ retrieval
state comes at the expense of successfully encoding present experience
at all, let alone the relationship between past and present (integration).
Indeed, retrieve evidence negatively predicted subsequent memory for
the new associations, as measured by accuracy on the direct association
test (t19=−3.97, p= .0008). Thus, classifier-derived evidence for a re-
trieval state clearly reflected situations inwhich present experiencewas
not effectively encoded.

The preceding analyses demonstrate that, among the instructed
sample of subjects, classifier-derived evidence for an integration state
predicted subsequent performance on the integration test. Because
this relationship was evident when controlling for the instructions sub-
jects received, we believe the classifier did not learn to decode process-
ing instructions, per se, but instead learned to decode the processing
ence, encode evidence, integrate evidence) was used to predict behavioral performance on
bject and each instruction condition (to control for effects of instruction). Each bar repre-
as selectively predicted by classifier-derived evidence for an integration state during new
lied to data froma separate set of ‘uninstructed’ subjects. Trial-level classifier evidence from
Again, evidence for an integration state during new learning predicted performance on the
abeled by the classifier as ‘integrate’ and mean category-level accuracy on the subsequent
nstructed (green) samples, but separate trend lines are shown for each group for compar-
+ item accuracy. (E) Rank ordered category+ item accuracy for individual subjects [com-
p of subjects with accuracy above 30% (n = 5), there was a robust trial-level relationship
item level accuracy on the subsequent integration test. Notes: * p b .05, ** p b .005; a two-

as a replication with a clear directional prediction.
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states elicited by the instructions. If so, then the classifier should also suc-
ceed in identifying processing states when instructions are altogether
absent. To test this idea, we trained a new classifier using the whole-
brain masks for the entire sample of instructed subjects (n = 21) and
then applied the trained classifier to each trial for each of the uninstruct-
ed subjects (n=8). As described above (seeMethods), theuninstructed
sample of subjects completed a nearly identical experiment, with the
critical difference being that processing states were not manipulated
during new learning for the uninstructed subjects. Instead, subjects
were simply instructed to try to remember each pair that they studied
(equivalent to the encoding condition for the instructed subjects).
After exiting the scanner, subjects completed an unanticipated integra-
tion test (the format of the integration test was identical for the
instructed and uninstructed subjects).

As with the instructed subjects, we used a three-way classifier
(encode vs. retrieve vs. integrate) to derive evidence for each of the
three processing states. Classifier-derived evidence for each state was
then used as a predictor variable in subject-specific logistic regression
analyses. Strikingly, we again found that greater classifier evidence for
integration during new learning was associated with better perfor-
mance on the critical integration test (t7 = 1.95, p = .046, one-tailed
t-test; Fig. 3B). As before, integrate evidence better predicted perfor-
mance on the integration test than did retrieve evidence (t7 = 3.01;
p b .01, one-tailed t-test). Thus, the classifier was clearly successful in
identifying spontaneous, subject-driven fluctuations in mnemonic pro-
cessing states.

Individual differences in processing states

The preceding section assessed the relationship between trial-level
evidence for an integration state and subsequent performance on the
integration test (i.e., within-subject analyses). A complimentary ques-
tion iswhether individual differences in processing stateswere correlat-
ed with performance on the integration test (i.e., between-subject
analyses). To this end, we tested whether participants that showed
more evidence for integration during new learning (i.e., a higher per-
centage of trials labeled by the classifier as ‘integrate trials’) also exhib-
ited better performance on the subsequent integration test. For this
analysis, we combined the instructed and uninstructed samples of sub-
jects to increase statistical power. As shown in Fig. 3C there was a mar-
ginally significant correlation between the percentage of trials in the
new learning phase that were labeled by the classifier as ‘integrate’
and the percentage of trials in the integration test with accurate
category-level responses (r = .34, p = .076; Fig. 3C). Although the
low number of integration test trials with accurate category + item
memory precluded within-subject analysis of classifier evidence as a
function of subsequent category + item memory (because of very low
bin sizes), the low bin sizes were not problematic for across-subject
analyses. Indeed, the across-subject correlation between the percentage
of trials labeled as integrate and the percentage of integration test trials
with accurate category- and item-level responses (‘category + item ac-
curacy’) was highly significant (r = .53, p = .003; Fig. 3D). Thus, indi-
vidual differences in the degree to which an integration state was
engaged during new learning (as indexed by the pattern classifier)
were related to individual differences in performance on the integration
test. Note: from here forward, we use category + item accuracy for all
across-subject correlations, but comparisons of correlations based on
category-level vs. category+ item-level accuracy andother, related cor-
relation analyses can be found in Supplementary Fig. 3.

Because there were a handful of subjects that had relatively high
category + item accuracy, we also tested for a within-subject relation-
ship between integrate evidence and integration test performance,
based on category + item accuracy, in this sub-sample of subjects
withmore favorable bin sizes. As can be seen in Fig. 3E,when combining
the instructed and uninstructed subjects, there was a ~10% gap in
category + item accuracy between the 5 highest performing subjects
(mean accuracy = 39.9%) and the remaining 24 subjects (mean
accuracy=13.4%).We thus repeated thewithin-subject logistic regres-
sion analysis for these ‘high-performing’ subjects (n=5). For this anal-
ysis, ‘successful’ integration was defined as trials associated with
accurate category + item memory and ‘unsuccessful’ integration as all
other trials. Indeed, within this sub-sample, there was a very robust
trial-level (within-subject) relationship between classifier-based evi-
dence for integration and performance on the integration test (t4 =
7.97, p = .001; Fig. 3E). Thus, for those subjects with sufficiently high
category+ itemaccuracy, decoded integration evidence clearly predict-
ed category + item accuracy on the integration test.

Reactivation of older memories during new learning

All of the above process-based decoding analyseswere orthogonal to
the specific content that subjects were remembering (i.e., whether sub-
jects were processing faces, scenes, or objects). However, prior studies
have found that successful memory integration can be predicted by
measuring the content of thememory system during new learning: spe-
cifically, by measuring the degree to which older memories are
reactivated during new learning (Wimmer and Shohamy, 2012;
Zeithamova et al., 2012a,b). Motivated by this prior work, we applied
decoding analyses to measure and quantify reactivation of older mem-
ories during the new learning phase. We used fMRI data collected dur-
ing learning of the old pairs (acquisition rounds) to train subject-
specific pattern classifiers to decode the visual category information
(face vs. scene vs. object) and then tested these classifiers on data
from the new learning phase (Kuhl et al., 2011; Polyn et al., 2005). On
each new learning trial, one of the three visual categories corresponded
to the old picture, one corresponded to the new picture, and one func-
tioned as a baseline (neither old nor new). To obtain a measure of reac-
tivation, the classifier evidence for the baseline category was subtracted
from classifier evidence for the category of the old picture (Fig. 4A)
(Kuhl et al., 2012).

Using the whole brain mask, significant reactivation of the old pic-
ture was observed in each of the three instruction conditions
(t20's N 3.8, p's b .001, one-tailed t-tests), but the strength of reactivation
was stronglymodulated by instruction condition (F2,40= 8.92, p b .001;
Fig. 4B). Statistically, reactivation was comparable in the integrate and
retrieve conditions (t20 = −0.61, p = .55), with both conditions
eliciting stronger reactivation than the encode condition (t20's N 3.8,
p's b .005).

We also measured reactivation for the uninstructed subjects. Al-
though these subjects were never explicitly told to retrieve old items,
we nonetheless sawmodest evidence for reactivation (Fig. 4C). Notably,
for both the instructed and uninstructed subjects, the whole brain clas-
sifiers tended to performworse than some of the individual sub-regions
(which contrasted with the processing state classifier, see Fig. 2C).

We next testedwhether trial-by-trial variability in classifier-derived
evidence for reactivation of older memories during new learning pre-
dicted performance on the subsequent integration test. This analysis
was very similar to the regression analysis described above relating ev-
idence for an integration state to performance on the integration test,
with the only difference being that we changed the predictor variable
(instead of decoded evidence for processing state, here we used
decoded evidence for reactivation). As before, subject-specific logistic
regression analyses were performed separately for each instruction
condition in order to control for task-instructions. Resulting beta values
were then averaged across instruction conditions to produce a single
beta value per subject. Here, we also combined data across the
instructed and uninstructed samples, in order to increase sensitivity.

Using trial-by-trial reactivation strength derived from the whole
brainmask, reactivation did not predict performance on the integration
test (t28= 0.26, p= .80; see Supplementary Fig. 2D–F for this and relat-
ed analyses). However, there was a modest, but significant correlation
between individual differences in reactivation strength and individual



Fig. 4.Decoding reactivation. (A) Pattern classifierswere trained to discriminate visual category information (face vs. scene vs. object) using data from the acquisition phase. The classifiers
were then tested on each trial in the new learning phase to measure the strength of evidence for the category of the old picture (as well as for the baseline and new picture categories);
evidence for the baseline categorywas subtracted from evidence for the old category to obtain ameasure of reactivation. (B) Reactivation in thewhole brainmask as a function of instruc-
tion condition. (C) Reactivation in twelve sub-regions of thewhole brainmask, separately for the instructed anduninstructed subjects. Error bars correspond to standard error of themean.
Notes: ** p b .005, one-tailed t-test; IFG= inferior frontal gyrus;MFG=middle frontal gyrus; SFG= superior frontal gyrus;MPFC=medial prefrontal cortex; OFC=orbitofrontal cortex;
LTC= lateral temporal cortex; VTC=ventral temporal cortex; HIPP=hippocampus; IPL= inferior parietal lobule; SPL= superior parietal lobule;MPAR=medial parietal cortex; OCC=
occipital cortex.
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differences in performance on the integration test (r = .39, p = .03;
Supplementary Fig. 4). Additionally, there was a significant, positive re-
lationship between trial-by-trial variability in reactivation strength and
the strength of classifier evidence for integration, as measured by
subject-specific, trial-level correlations between these two forms of
classifier evidence (instructed and uninstructed samples combined
and controlling for instruction condition among the instructed subjects;
mean z-transformed correlation = 0.037, t20 = 3.20, p= .003; Supple-
mentary Fig. 5).

We also tested for a relationship between reactivation and memory
on the subsequent direct association test (i.e., the old association and
new associations), again using subject-specific logistic regression analy-
ses that combined across instructed and uninstructed subjects and con-
trolled for instruction condition among the instructed subjects.
Consistent with prior evidence (Kuhl et al., 2010), we found a positive
relationship between trial-by-trial fluctuations in reactivation strength
during new learning and subsequentmemory for corresponding old as-
sociations (t27= 2.29, p= .03; Supplementary Fig. 2E). That is, if old as-
sociations were reactivated during new learning, they were more likely
to be subsequently remembered. Likewise, there was a robust across-
subject correlation between the strength of reactivation and subsequent
memory for old associations (r = .65, p b .001; Supplementary Fig. 4).
Subsequent memory for the new associations was not related to trial-
by-trial variability in reactivation of old associations during new learn-
ing (t27= .26, p= .80; Supplementary Fig. 2F) nor to across-subject dif-
ferences in reactivation strength (r = .17, p = .39; Supplementary
Fig. 4).

Processing states in regions of a priori interest

Previous research has indicated that the medial prefrontal cortex
(MPFC) and hippocampus (HIPP) are particularly important for memo-
ry integration (Benoit et al., 2014; Schlichting and Preston, 2015; van
Kesteren et al., 2013; Zeithamova and Preston, 2010; Zeithamova
et al., 2012a,b). Additionally, integration has been linked to reactivation
of older memories in ventral temporal cortex (VTC) during new
learning (Zeithamova et al., 2012a,b). We therefore conducted several
follow-up analyses targeting these three regions of a priori interest in
order to better characterize their respective mechanistic contributions
to memory integration.

As a first step, we compared pairwise processing state classification
accuracy across the sub-regions. An ANOVA with factors of sub-region
(MPFC vs. HIPP vs. VTC) and state pair (encode vs. retrieve, retrieve vs.
integrate, encode vs. integrate) revealed a significant interaction
(F4,80 = 2.57, p = .04; Fig. 5A). Of particular interest was the dissocia-
tion between MPFC and HIPP: in MPFC classification was numerically
highest – and only above chance – for encode vs. integrate (t20 =
2.50, p= .01, one-tailed t-test), whereas in HIPP, classification was nu-
merically highest and only above chance for encode vs. retrieve (t20 =
4.52, p = .0001, one-tailed t-test). When specifically considering
MPFC vs. HIPP, the interaction between region and state pair was sig-
nificant (F2,40 = 4.17, p = .02), confirming that these regions were
differentially signaling subjects'mnemonic processing states. A comple-
mentary analysis comparing the similarity (correlation) of activation
patterns across processing states and across sub-regions revealed simi-
lar results (Supplementary Fig. 6).

The fact that HIPP did not distinguish integrate trials from either en-
code or retrieve trials (t20's b 1.2, p's N .12) is notable given that the hip-
pocampus has previously been implicated in memory integration
(Preston and Eichenbaum, 2013; Schlichting et al., 2014; Shohamy
and Wagner, 2008; Zeithamova et al., 2012a,b). One possibility is that
HIPP may have been poorly suited to the across-subject decoding ap-
proach that we used. To address this concern, we re-ran the processing
state decoding analyses in the hippocampus within-subjects (i.e., using
leave-one-scan-out cross-validation). The results were nearly identical
to the across-subject results: encode vs. retrieve classification was sig-
nificantly above chance (t20 = 2.66, p= .008, one-tailed t-test), but in-
tegrate trials could not be distinguished from either encode or retrieve
trials (t20's b 1.1, p's N .15, one-tailed t-tests). Thus, the within- and
between- subject analyses each indicated that hippocampal activity
patterns did not differentiate an integration state from encoding or re-
trieval states.



Fig. 5. Process decoding in sub-regions of interest. (A) Pairwise classification accuracy for each pair of instruction conditions across sub-regions. (B) Trial-by-trial fluctuations in classifier
evidence for each processing state were used to predict category-level behavioral performance on the post-scan integration test using logistic regression analyses (as in Fig. 3A) for each of
the sub-regions. Each bar represents themean beta values from separate regressions for each formof classifier evidence (retrieve, encode, integrate) and each sub-region. Notes: ** p b .01;
* p b .05; ~ p b .1. One-tailed t-testswere used for (A) given that classifier accuracywas compared to chance, but two-tailed tests were used for (B). Performance on the integration test was
positively predicted by classifier-derived integrate evidence inMPFC (marginally significant) and VTC. Integration test performancewas negatively predicted by retrieve evidence inMFPC
and encode evidence in VTC.
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Next, for each of the same sub-regions, we asked whether classifier-
derived processing state evidence predicted performance on the inte-
gration test. The analyses were identical to the whole brain version
(Fig. 3A), with the exception that here we combined evidence from
the instructed and uninstructed samples in order to increase sensitivity.
That is, although there were separate procedures for performing classi-
fication for the instructed and uninstructed samples, we pooled the beta
values produced by the subject-specific logistic regression analyses
(total n = 29). The relationship between classifier-derived integration
evidence and integration test performance was marginally significant
in MPFC (t28 = 1.90, p = .068), and significant in VTC (t28 = 2.21,
p = .04), but not significant in HIPP (t28 = 0.19, p = .85). Integration
test performance was also negatively predicted by retrieve evidence in
MPFC (t28 = −2.21, p = .04), and by encode evidence in VTC
(t28 = −2.54, p = .02). We did not observe, for any of the sub-
regions, significant correlations between individual differences in the
percentage of trials in the new learning phase labeled by the classifier
as ‘integrate’ and the percentage of trials in the integration test with ac-
curate category + item (or category only) level responses (r's b .1; see
Supplementary Fig. 3).

Reactivation in regions of a priori interest

Our final analyses focused on reactivation within the three sub-
regions of interest. As noted above, VTC reactivation of older memories
during new learning has previously been associated with successful
memory integration (via across-subject correlation analysis;
Zeithamova et al., 2012a,b). However, despite considerable evidence
implicating MPFC in integration (Benoit et al., 2014; van Kesteren
et al., 2013; Zeithamova and Preston, 2010; Zeithamova et al., 2012a,
b), prior studies have not directly probed reactivation within MPFC in
relation to integration.

In VTC, we observed significant reactivation across all instruction
conditions (t20's N 3.8, p's b .005) and reactivation was strongly modu-
lated by instruction condition (F2,40 = 9.01, p = .0006; Fig. 6A), with
the lowest degree of reactivation for encode trials. InMPFC, reactivation
was significant across all conditions (t20's N 2.4, p's b .05) and there was
a marginally significant effect of instruction on reactivation (F2,40 =
2.86, p = .07; Fig. 6A). In HIPP, reactivation was robust only in the re-
trieve condition (retrieve: t20 = 4.22, p = .0004; others: t20's b 1.1,
p's N .29), and therewas a significant effect of instruction on reactivation
(F2,40 = 5.05, p = .01). A targeted ANOVA comparing reactivation in
HIPP vs. MPFC across retrieve vs. integrate trials revealed a significant
interaction (F1,20= 4.78, p= .04), reflecting relatively greater reactiva-
tion in HIPP for retrieve than integrate trials and relatively greater
reactivation in MPFC for integrate than retrieve trials. Thus, compared
to HIPP, MPFC played a greater role in representing older memories
when there was a demand to integrate past with present.

We next tested whether sub-region reactivation was related to be-
havioral performance on the integration test. We first performed
within-subject logistic regression analyses that related trial-by-trial
fluctuations in reactivation to category-level accuracy on the integration
test, combining data from the instructed and uninstructed samples
and controlling for instruction condition for the instructed subjects
(identical to the whole-brain version of this analysis described above).
A significant positive relationship was observed for VTC (t28 = 2.14,
p = .04; Fig. 6B), but not for MPFC (t28 = − .71, p = .49) or HIPP
(t28 = −0.09, p = .93). We also tested whether individual differences
inmean reactivation during new learning correlatedwithmean accura-
cy on the integration test (category + item). For this analysis (Fig. 6C)
we again combined the instructed anduninstructed samples. Significant
positive correlations were observed for MPFC (r = 0.57, p = .001) and
VTC (r = 0.48, p = .008), but not HIPP (r = .25, p = .19). For both
VTC and MPFC, the relationship between reactivation and integration
was qualitatively similar for instructed vs. uninstructed samples
(Fig. 6C: black vs. green trend lines).
Discussion

Here, we sought to ‘read out’mnemonic processing states from pat-
terns of fMRI activity acquired during the learning of overlapping events
so that we could predict when events would be integrated in memory.
In an initial set of ‘instructed’ subjects, we explicitly biased mnemonic
processing states and used across-subject decoding analyses to discrim-
inate encoding, retrieval, and integration states. Validating these
decoding results, we found that decoded evidence for an integration
state during overlapping learning predicted performance on a subse-
quent test of memory integration. Strikingly, we found that our
decoding algorithm could also successfully predict integration in a
new set of ‘uninstructed’ subjects whose processing states were not bi-
ased in anyway. Finally,we compared howseveral regions of a priori in-
terest contributed to memory integration. We found that medial
prefrontal cortex (MPFC) and hippocampus (HIPP) differentially sig-
naled subjects' mnemonic processing states. Namely, activity patterns
inMPFCwere relativelymore diagnostic of an integration statewhereas
HIPP activity patternswere relativelymore diagnostic of the tradeoff be-
tween encoding vs. retrieval states. Complementing this dissociation,
we found that in MPFC – but not HIPP – older memories were
reactivated in service of integration.



Fig. 6. Reactivation in sub-regions of interest. (A) Pattern classifiers were trained to discriminate visual category information (face vs. scene vs. object) using data from the acquisition
phase and were then tested on each trial in the new learning phase. Classifier evidence for the baseline category (i.e., the category to which neither the old nor new picture belonged)
was subtracted from evidence for the old category to obtain a measure of reactivation. Across the sub-regions, reactivation was greater for integrate and retrieve trials than encode trials.
HIPP was characterized by relatively weaker reactivation on integrate than retrieve trials, which contrasted with MPFC. (B) Trial-by-trial fluctuations in reactivation strength during new
learningwere related to category-level accuracy on the subsequent integration test using subject-specific logistic regression analyses (data from instructed and uninstructed subjectswere
combined). Individual bars reflect mean beta values from these regression analyses, separately for each sub-region. Reactivation in VTC positively predicted subsequent performance on
the integration test. (C) Individual differences inmean reactivation during the new learning phasewere correlatedwith category+ item accuracy on the subsequent integration test, sep-
arately for each sub-region. Significant across-subject correlations were observed in MPFC and VTC. [Notes: ** p b .01; * p b .05; ~ p b .1. One-tailed t-tests were used for (A) given that
reactivation was compared to baseline, but two-tailed tests were used in (B). The correlations combined the instructed (black) and uninstructed (green) samples, but separate trend
lines are shown for each group for comparison].
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Decoding mnemonic processing states

Computational models, behavioral studies, electrophysiological re-
cordings, and neuroimaging data all support the idea that the memory
system fluctuates between distinct processing states and that these
states are reflected in profiles of neural activity. For example, fMRI stud-
ies have shown that encoding and retrieval processes differentially
modulate activity in several brain regions (Donaldson et al., 2001;
Duncan et al., 2014; Eldridge et al., 2005). Likewise, electrophysiological
recordings in humans (Rizzuto et al., 2006) and rodents (Douchamps
et al., 2013; Hasselmo et al., 2002; Kunec et al., 2005; Siegle and
Wilson, 2014) have identified distinct neural correlates of encoding vs.
retrieval. Our study builds on these findings in two ways. First, in addi-
tion to considering encoding vs. retrieval states, we also considered in-
tegration as a potentially distinct state of the memory system. Second,
we applied machine-learning algorithms in order to decode trial-level
fluctuations in mnemonic processing states from distributed neural ac-
tivity patterns. Several aspects of this decoding-based approach are no-
table for methodological reasons.

In the context ofmemory research, a growing number of fMRI studies
have applied decoding analyses to read outwhat human subjects are re-
membering (e.g., Kuhl et al., 2011; Polyn et al., 2005). There are, howev-
er, several examples where pattern classifiers have been used – as in the
present study – to decode cognitive processes or operations that are
thought to generalize across the content or stimuli that subjects are see-
ing or remembering (e.g., McDuff et al., 2009; Poldrack et al., 2009;
Rissman et al., 2010). Interestingly, we found that decoding of processing
states was significantly better when considering whole brain activity
patterns compared to any of the individual sub-regions within the
whole brain mask. This suggests that individual sub-regions carried
non-redundant information and that processing states were related to
broadly distributed information (see Fig. 2D). In contrast, reactivation-
based decoding (a form of content decoding) was as robust or better in
several of the sub-regions (e.g., VTC) compared to thewhole brainmask.

Another important feature of our decoding approach is that it was
applied across subjects. Thus, our classifiers could only succeed in
decoding processing states to the extent that mappings between these
states and neural activity patterns generalized across subjects. We an-
ticipated that this across-subject decoding approach would be possible
based on prior examples of across-subject decoding of cognitive pro-
cesses (Mitchell et al., 2004; Poldrack et al., 2009; Rissman et al.,
2010). Indeed, across-subject generalizability was a critical feature of
the present approach as it allowed us to test whether a classifier trained
on data from the set of instructed subjects would transfer to the set of
uninstructed subjects. The fact that we observed transfer from the
instructed to the uninstructed sample is striking because the very ex-
perimental manipulation that was used to train the classifier in the
instructed subjects (i.e., the instructions)was absent in theuninstructed
subjects. While this meant that there was no ‘correct’ label for each trial
for the uninstructed subjects, we were able to validate the classifier's
predictions by relating these predictions to performance on the subse-
quent integration test. Using this approach, it would therefore be possi-
ble to test for spontaneous memory integration in other unconstrained
learning contexts or to compare the relative strength of integration
across individuals. One potential advantage of such an approach is
that it can isolate integration processes that occur at the time of learning
(Shohamy and Wagner, 2008) as opposed to integration that might
occur ‘offline’ during periods of rest or sleep following learning
(Kumaran and McClelland, 2012).

Integration as a distinct processing state

Using whole-brain, across-subject decoding analyses, we found that
integration was clearly discriminable from encoding and retrieval
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states. Critically, we validated these classification results by showing
that decoded evidence for an integration state positively predicted per-
formance on the integration test. In contrast, decoded evidence for
encoding or retrieval states did not (positively) predict performance
on the integration test. In fact, evidence for a retrieval state negatively
predicted subsequent memory for new associations. Importantly, be-
cause we controlled for the instructions subjects received on each
trial, these relationships between decoded processing state evidence
and performance on the subsequent memory tests cannot be explained
in terms of subjects following or not following instructions.

What might have contributed to the classifier's ability to detect an
integration state? There aremultiple sources of information the classifi-
er may have exploited, including: workingmemory load, cognitive con-
trol demands, relational processing demands, an abstract intention ‘to
integrate,’ etc. While we cannot tease apart these possibilities, they
are not mutually exclusive. Indeed, it seems likely that different regions
contributed different forms of information, which is consistentwith our
observation that the whole brain classifier out-performed all of the sub-
regions. Thus, ‘integration’ may well be supported by a set of sub-
processes. Of critical interest here, however, was to capture the broader
processing state that is associated with memory integration.

It is also notable that, when considering pairwise classification of the
three processing states,we did not observe a significant difference in ac-
curacy across the three pairs (encode vs. retrieve, encode vs. integrate,
retrieve vs. integrate). This is consistent with the idea that integration
requires a processing state that is qualitatively distinct – or at least
some sub-processes that are qualitatively distinct – from encoding
and retrieval. If integration were simply ‘in between’ encoding and re-
trieval states, we would have expected an integration state to be more
confusable with encoding/retrieval states (as was seen in HIPP). When
considering candidate sub-processes that contribute to integration
(e.g., working memory, cognitive control), it is also clear that integra-
tion does not lie ‘in between’ encoding and retrieval.

Although decoding of processing states was clearly most accurate
when using thewhole brain classifier (Fig. 2C), we compared classifica-
tion accuracy across several sub-regions of a priori interest (MPFC, HIPP,
and VTC) in order to better understand how these regions contribute to
memory integration. When considering pairwise classification (encode
vs. retrieve, retrieve vs. integrate, encode vs. integrate) across the three
sub-regions, we observed a significant pair-by-region interaction. In
other words, these regions differentially signaled the three processing
states. Whereas HIPP strongly distinguished between encoding and re-
trieval states, it did not differentiate either of these states from integra-
tion (VTC was qualitatively similar to HIPP). In contrast, classification
accuracy in MPFC was numerically highest, and only above chance, for
encode vs. integrate trials. Although direct classification of retrieve vs.
integrate trials was not successful in MPFC, there was a marginally sig-
nificant relationship between classifier-derived evidence for integration
in MPFC and performance on the integration test (Fig. 5C). Moreover,
MPFC evidence for retrieval negatively predicted integration test perfor-
mance. Collectively, these results indicate that activity patterns inMPFC
were somewhatmore diagnostic of an integration state thanwere activ-
ity patterns in HIPP, consistent with the idea that these regions make
dissociable contributions to memory integration (Zeithamova and
Preston, 2010). That said, considered on their own – and in relation to
whole brain activity patterns –MPFC activity patternswere onlyweakly
diagnostic of an integration state.

The fact that HIPP was selectively sensitive to the comparison of
encode vs. retrieve trials is consistent with proposals that the hippo-
campus alternates between opposing encoding and retrieval states
(Buzsáki, 1989; Carr and Frank, 2012; O'Reilly and McClelland, 1994).
Integration, in contrast, was representationally ‘in between’ encoding
and retrieval states in the hippocampus. However, it is important to em-
phasize that these data do not argue against a role for the hippocampus
in integration; rather, they clarify what that role might be (particularly
in relation to MPFC). One possibility is that the hippocampus alternates
between encoding and retrieval states but that these alternations occur
on the order of hundreds of milliseconds (Douchamps et al., 2013;
Hasselmo et al., 2002; Kunec et al., 2005; Rizzuto et al., 2006; Siegle
and Wilson, 2014). This rapid alternation could allow for near-
simultaneous encoding and retrieval (Kemere et al., 2013; Paulsen and
Moser, 1998); however, these alternations would not be visible at the
level of fMRI time scales. Alternatively, encoding and retrieval may not
be categorically distinct states, and integration may reflect a processing
state that is somewhere along an encoding-retrieval continuum (Carr
and Frank, 2012). In either case, integration would elicit hippocampal
activity patterns (asmeasured by fMRI) thatwould be representational-
ly in between (and therefore confusable with) encoding and retrieval
states, as seen here.

In contrast to HIPP, the pattern of decoding results in MPFC is not
easily explained in terms of a single encoding-retrieval dimension. In-
deed, MPFC did not successfully distinguish between encoding and re-
trieval states (Fig. 5A). Rather, the demand to integrate past with
present may require a qualitatively different form of processing that re-
lies on MPFC. Our reactivation-based decoding results, which are con-
sidered in the following section, provide additional insight into how
MPFC contributes to integration.

Relationship between reactivation and integration

Whole-brain analyses revealed that reactivation was present across
all instruction conditions, but was markedly greater for retrieve and in-
tegrate trials than encode trials. These data provide confirmation that
subjects successfully modulated internal representations of past experi-
ence in-line with instructions. Notably, trial-level variability in whole-
brain reactivation was not predictive of performance on the integration
test. However, there was a significant trial-level relationship between
decoded evidence for an integration state and decoded evidence for
reactivation (i.e., between evidence from the process-based and
reactivation-based classifiers). This correlation is consistent with the
idea that reactivation was a component of integration.

As can be seen in Fig. 4C, reactivation was more robust in several of
the sub-regions than in thewhole brainmask.When specifically consid-
ering the sub-regions of a priori interest (MPFC, HIPP, VTC), we ob-
served informative differences across the sub-regions. In VTC, there
was robust evidence for reactivation across all instruction conditions,
with greater reactivation for retrieve/integrate trials than encode trials
(Fig. 6A). Moreover, trial-level variability and individual differences in
VTC reactivation during new learning predicted performance on the
memory integration test (Figs. 6B–C), consistent with prior evidence
(Zeithamova et al., 2012a,b).

Prior studies, however, have not specifically tested for reactivation
within MPFC. Indeed, one question raised by prior studies (e.g., see
Benoit et al., 2014) is whether MPFC supports integration by biasing re-
activation in posterior regions (Schlichting and Preston, 2015) or by ac-
tively representing multiple events in an integrated manner. We found
clear evidence for MPFC reactivation across all trials, with reactivation
numerically greatest for integrate trials (Fig. 6A). While we did not
observe a trial-by-trial relationship between MPFC reactivation and in-
tegration test performance, there was a robust across-subject relation-
ship between MPFC reactivation and performance on the integration
test (Fig. 6C). Collectively, these findings clearly indicate that MPFC
reactivated past experience during new learning, but providemixed ev-
idence as to whether MPFC reactivation during new learning contrib-
utes to memory integration.

In HIPP, evidence for reactivation was robust during retrieve trials,
but absent during integrate trials. Moreover, neither trial-level nor
across-subject variability in HIPP reactivation predicted performance
on the integration test. Thus, as with the process-based decoding analy-
ses, the reactivation-based decoding analyses suggest that MPFC and
HIPP differentially contribute to memory integration. Namely, relative
to HIPP, MPFC plays a more important role in actively representing
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past experience during new learning. More generally, these data are
consistent with evidence that prefrontal cortex allows for active repre-
sentation of multiple memories (Bor et al., 2003; Hernández et al.,
2010; Siegel et al., 2009), particularly when task demands involve relat-
ing individual memories to one another.

Summary

Here, we used a novel methodological approach to determine how
and when memory integration occurs. We show that integration in-
volves a processing state of the memory system that is distinct from
encoding/retrieval states and is reflected in broadly distributed neural
activity patterns. Moreover, by decoding the processing states on
individual learning trials, wewere able to reliably predict behavioral ex-
pressions ofmemory integration.We show that this approach is flexible
and powerful and also provides important new insight into the relative
contributions of specific brain regions to memory integration.
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