
Behavioral/Cognitive

Hippocampal Mismatch Signals Are Modulated by the
Strength of Neural Predictions and Their Similarity to
Outcomes

X Nicole M. Long,1 X Hongmi Lee,2 and X Brice A. Kuhl1

1Department of Psychology, University of Oregon, Eugene, Oregon 97403, and 2Department of Psychology, New York University, New York, New York
10003

The hippocampus is thought to compare predicted events with current perceptual input, generating a mismatch signal when predictions
are violated. However, most prior studies have only inferred when predictions occur without measuring them directly. Moreover, an
important but unresolved question is whether hippocampal mismatch signals are modulated by the degree to which predictions differ
from outcomes. Here, we conducted a human fMRI study in which subjects repeatedly studied various word–picture pairs, learning to
predict particular pictures (outcomes) from the words (cues). After initial learning, a subset of cues was paired with a novel, unexpected
outcome, whereas other cues continued to predict the same outcome. Critically, when outcomes changed, the new outcome was either
“near” to the predicted outcome (same visual category as the predicted picture) or “far” from the predicted outcome (different visual
category). Using multivoxel pattern analysis, we indexed cue-evoked reactivation (prediction) within neocortical areas and related these
trial-by-trial measures of prediction strength to univariate hippocampal responses to the outcomes. We found that prediction strength
positively modulated hippocampal responses to unexpected outcomes, particularly when unexpected outcomes were close, but not
identical, to the prediction. Hippocampal responses to unexpected outcomes were also associated with a tradeoff in performance during
a subsequent memory test: relatively faster retrieval of new (updated) associations, but relatively slower retrieval of the original (older)
associations. Together, these results indicate that hippocampal mismatch signals reflect a comparison between active predictions and
current outcomes and that these signals are most robust when predictions are similar, but not identical, to outcomes.
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Introduction
Memories for past experience allow for outcomes to be predicted
based on current perceptual experience. Many theoretical per-

spectives (Gluck and Myers, 1993; Eichenbaum, 2004; Lisman
and Grace, 2005; Buckner, 2010; Rolls, 2013; Davachi and
DuBrow, 2015) and empirical findings (Kumaran and Maguire,
2006a; Duncan et al., 2009; Chen et al., 2011) suggest that the
hippocampus plays a critical role in comparing memory-based
predictions with perception-based outcomes. When predictions
do not match outcomes, the hippocampus is thought to generate
mismatch signals that reflect these expectancy violations (Kuma-
ran and Maguire, 2006b; Duncan et al., 2012; Chen et al., 2015).
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Significance Statement

Although the hippocampus is widely thought to signal “mismatches” between memory-based predictions and outcomes, previous
research has not linked hippocampal mismatch signals directly to neural measures of prediction strength. Here, we show that
hippocampal mismatch signals increase as a function of the strength of predictions in neocortical regions. This increase in
hippocampal mismatch signals was particularly robust when outcomes were similar, but not identical, to predictions. These
results indicate that hippocampal mismatch signals are driven by both the active generation of predictions and the similarity
between predictions and outcomes.
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Although mismatch signals should depend critically on the active
generation of predictions (Kumaran and Maguire, 2007), exist-
ing evidence for hippocampal mismatch signals comes from par-
adigms in which prediction strength is inferred but not measured
directly (Kumaran and Maguire, 2006b; Chen et al., 2015). More-
over, an important but unresolved question is whether hip-
pocampal mismatch signals are sensitive to the degree of
similarity between predictions and outcomes. When predictions
are close, but not identical, to outcomes, are mismatch signals
relatively weaker or stronger? From a prediction error perspec-
tive, mismatch signals may be greater when predictions are
relatively farther from outcomes (Fiorillo et al., 2003). However,
given the proposed role of the hippocampus in creating distinct
representations of similar stimuli (Düzel et al., 2003; Norman et
al., 2006; Leutgeb et al., 2007; Bakker et al., 2008; Yassa and Stark,
2011; Hulbert and Norman, 2015; Favila et al., 2016), hippocam-
pal mismatch signals may increase when predictions are relatively
closer to outcomes.

Whereas memory-based predictions are thought to be gener-
ated by the hippocampus (Eichenbaum and Fortin, 2009; Buck-
ner, 2010; Davachi and DuBrow, 2015; Hindy et al., 2016), these
predictions are reflected by reactivation in neocortical areas (Kok
et al., 2012; Hindy et al., 2016). Memory reactivation has been
most extensively documented in visual cortical areas (e.g., Polyn
et al., 2005; Kuhl et al., 2011), but has also been observed in
frontoparietal regions. For example, reactivation within poste-
rior parietal cortex (PPC) reflects detailed information about re-
trieved content (Kuhl and Chun, 2014; Lee et al., 2016).
Reactivation within medial prefrontal cortex (mPFC) is thought
to be of particular importance when past experience is compared
with present experience (Kroes and Fernandez, 2012; Schlichting
and Preston, 2015; Demblon et al., 2016; Richter et al., 2016) and
connections between mPFC and hippocampus may provide the
ideal scaffolding for a prediction generation and comparison sys-
tem (Preston and Eichenbaum, 2013; Rajasethupathy et al., 2015;
Anderson et al., 2016). Collectively, PPC and mPFC are part of
the brain’s so-called default mode network (DMN) and it has
been argued that the DMN plays a central role in memory-based
predictions (Bar, 2007, 2009). Indeed, activity patterns distrib-
uted across the DMN contain rich information about the con-
tents of memory (Chen et al., 2016).

In the present study, we tested whether and how hippocampal
mismatch signals are modulated by the strength and similarity of
memory-based predictions. We used an associative memory task
in which human subjects learned cue– outcome pairings. Out-
comes were either expected or unexpected and unexpected out-
comes were further subdivided into “near” and “far” outcomes
based on their similarity to predictions. Motivated by the afore-
mentioned studies, we measured prediction strength by using
multivoxel pattern analysis of the DMN and two subregions
within the DMN: mPFC and PPC. We first tested whether pre-
diction strength was related to the magnitude of hippocampal
outcome responses. We hypothesized that hippocampal outcome
responses would increase when predictions were strong but ulti-
mately violated, consistent with a mismatch signal. Second, given
the role of the hippocampus in discriminating similar events
(Bakker et al., 2008; Yassa and Stark, 2011), we tested whether
mismatch signals were stronger when predictions are near to
outcomes compared to far from outcomes. Finally, we as-
sessed whether hippocampal outcome responses were associ-
ated with subsequent behavioral expressions of successful
memory updating.

Materials and Methods
Subjects
Twenty-three (8 female; mean age � 22.4 years) and 26 (15 female; mean
age � 21.2 years) right-handed, native English speakers from the Yale
University community participated in two separate experiments. Three
subjects were excluded from the second experiment, one due to technical
error, one due to user error during scanning, and the third due to failure
to follow task instructions, resulting in a final set of 23 subjects included
in each of the two experiments. The experiments were identical with the
exception of a small difference in the post-scan memory test (see below).
We therefore collapsed data across both experiments. All subjects had
normal or corrected-to-normal vision. Informed consent was obtained
in accordance with the Yale Institutional Review Board.

Materials
Stimuli consisted of 144 words and 252 pictures. Words were verbs with
a length between 4 and 11 letters (M � 6.3). Pictures consisted of gray-
scale photographs (225 � 225 pixels) of famous people (e.g., Steve Mar-
tin; “faces”), famous locations (e.g., Sydney Opera House; “scenes”), and
common objects (e.g., toothbrush; “objects”). All word–picture pairings
and the assignment of words and pictures to conditions were randomized
for each subject.

Procedure and design
Acquisition phase. Subjects completed three acquisition rounds during
which they encoded word–picture (cue– outcome) pairs (Fig. 1). Words
were presented directly above each picture. Subjects were instructed to
learn these associations in anticipation of a later memory test. No behav-
ioral responses were made during the acquisition rounds. Each acquisi-
tion round contained the same 144 associations, with the order and trial
structure varying across rounds. During the first two acquisition rounds,
which were completed before subjects entered the fMRI scanner, each
word–picture association was presented for 2750 ms, followed by a 500
ms fixation cross. The order of presentation of the associations was ran-
domized. The third acquisition round was conducted during a single
functional imaging scan. Again, all 144 associations were presented, but
during this round, associations were presented in “mini-blocks” grouped
by the visual categories of pictures. For example, four associations con-
taining face pictures might be presented consecutively, followed by four
associations containing scene pictures, etc. Within each mini-block, a
word–picture association was presented for 2500 ms, followed by a fixa-
tion cross for 500 ms. Therefore, each mini-block lasted 12000 ms. Each
mini-block was followed by a 6000 ms interblock interval. This interval
began with a fixation cross displayed for 700 ms and was then followed by
a series of four randomly oriented (left- vs right-oriented) arrows. Each
arrow was presented for 800 ms and was followed by a fixation cross for
400 ms. A final fixation cross was then presented for 500 ms before the
next block began. The motivation for the mini-block structure of the
third acquisition round was to optimize the use of the functional data for
training a pattern classifier to discriminate the three visual categories of
the pictures (faces vs objects vs scenes).

Updating phase. After the third acquisition round, subjects began the crit-
ical updating phase, which was also conducted while fMRI data were col-
lected. During the updating phase, all of the 144 original cues were presented
again. Of the 144 cues, 108 were presented with novel outcomes/pictures
(“unexpected” trials) and the remaining 36 were presented with the same
outcomes/pictures as during acquisition (“expected” trials). Subjects were
instructed that, when associations changed (unexpected trials), they should
“update” their memory to reflect the new word–picture association. Impor-
tantly, unexpected trials could be further subdivided according to whether
the outcome was from the same visual category as the original outcome
(“near” trials) or from a distinct visual category (“far” trials). For example, a
near trial would occur if a cue that was originally paired with a scene picture
(e.g., Sydney Opera House) was updated with a new scene picture (e.g., ruins
of Pompeii; Fig. 1). Likewise, a far trial would occur if a cue that was originally
paired with a face picture (e.g., Steve Martin) was updated with an object
picture (e.g., pacifier; Fig. 1).

In contrast to the acquisition phase, the presentation of cues and out-
comes was temporally offset in the updating phase. Specifically, each cue
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(word) was presented alone for 4000 ms and then the outcome (picture)
appeared beneath the word for an additional 4000 ms (Fig. 1). This
temporal offset between cues and outcomes allowed for predictions to be
generated and measured before outcomes were displayed. Because our
goal was to decode/measure trial-level cue and outcome responses, we
did not jitter the presentation of stimuli, which would have potentially
confounded measurements with jitter length. Trials were separated by an
8000 ms intertrial interval. This interval began with a fixation cross dis-
played for 700 ms and was then followed by a series of six randomly
oriented (left- vs right-oriented) arrows. Each arrow was presented for
700 ms and was followed by a fixation cross for 400 ms. A final fixation
cross was then presented for 700 ms before the next trial began. The
updating phase was divided into six rounds. Each round included 24
trials (18 unexpected, six expected). The 18 unexpected trials were bal-
anced in terms of the visual categories corresponding to the original and
new associations. Specifically, there were nine different combinations of
visual categories for the original versus new associations (face vs object,
face vs scene, etc.) and each of these nine combinations appeared twice
per updating round. Likewise, for the six expected trials within each
round, there was an even number of trials corresponding to each of the
three visual categories (i.e., two face trials, two object trials, and two scene
trials).

During the updating phase, subjects were instructed to respond, via
button box, whether each outcome (picture) was new (i.e., had not been
encountered during acquisition) or old (i.e., had been encountered dur-
ing acquisition). Therefore, for all unexpected trials, the correct response
was “new,” and for all expected trials the correct response was “old.” Due
to technical error, responses were only recorded from the sixth updating
round for the majority of subjects. However, this task was only included
to ensure subject vigilance and accuracy from the available data was near
ceiling (mean � 93%).

Post-test phase. After scanning, subjects completed a behavioral post-
test that probed memory for each of the 144 associations. On each trial in
the post-test subjects were presented with a cue word and were given a
two- or three-alternative forced-choice task of selecting the picture that
had been presented with the cue word during the updating phase (i.e.,
the most recent association). The cue words were presented directly
above the set of pictures. For cue words that had been paired with the
same picture in both the acquisition and updating phases (expected con-
dition), only two choices were included on the test trial: the picture that
had been paired with the cue during the acquisition and updating rounds
(the target) and a picture from a different association (a lure). For cues
that were paired with a new picture during the updating phase (unex-
pected condition), three alternatives were included on the test trial: the

picture that had been paired with the cue during the updating phase (the
target), the picture that had been paired with the cue during the acquisi-
tion phase (the original association), and a picture from a different asso-
ciation (a lure). Note: lure pictures were randomly drawn from the three
visual categories. After the forced-choice decision, subjects rated their
confidence (high/low). The only difference between Experiments 1
and 2 is that, in Experiment 2, after subjects selected the “most recent”
association for each cue, they were also asked to select the original
picture (for the unexpected condition only). The post-test was
self-paced.

fMRI data acquisition
Imaging data were collected on a 3 T Siemens Trio scanner at the Anlyan
Center at Yale University using a 12-channel head coil. Before the func-
tional imaging, two T1-weighted anatomical scans were collected (in-
plane and high-resolution 3D). Functional data were collected using a
T2*-weighted gradient EPI sequence; TR � 2000 ms, TE � 25 ms, flip
angle � 90°, 34 axial-oblique slices, 224 mm FOV (3.5 � 3.5 � 4 mm). A
total of seven functional scans (one acquisition phase scan and six
updating phase scans) were collected. The acquisition phase scan
consisted of 329 volumes. Each updating phase scan consisted of 197
volumes. The first five volumes from each scan were discarded to
allow for T1 equilibration.

fMRI data preprocessing
fMRI data preprocessing was conducted using SPM8 (Wellcome Depart-
ment of Cognitive Neurology, London). Images were first corrected for
head motion. High-resolution anatomical images were coregistered to
the functional images and segmented into gray matter, white matter, and
CSF. Segmented gray matter images were “skull-stripped” and normal-
ized to a gray matter Montreal Neurological Institute template. Resulting
parameters were used for normalization of functional images. Functional
images were resampled to 3 mm isotropic voxels and smoothed with a
Gaussian kernel (5 mm FWHM). Functional data were then detrended,
high-pass filtered (0.01 Hz), and z-scored within scan (mean response of
each voxel within each scan � 0). Next, data were temporally compressed
by averaging over volumes. For the acquisition phase data (i.e., the third
acquisition round), each of the 36 mini-blocks was treated as a single
“trial” by averaging the third through eighth volumes collected after the
start of the mini-block. This resulted in a total of 36 spatial volumes, with
12 volumes per visual category. For the updating phase, each trial was
separated into two components: prediction and outcome. For the pre-
diction component, the third and fourth volumes (4 – 8 s) after cue onset
were averaged together. For the outcome component, the third and
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Figure 1. Experimental paradigm. Subjects first completed three acquisition rounds during which they learned word–picture (cue– outcome) associations. The trial structure for the first two
acquisition rounds is shown above; the third acquisition round had a different trial structure and timing parameters (see Materials and Methods). Acquisition rounds 1 and 2 were collected before
fMRI scanning; acquisition round 3 was conducted during fMRI scanning. After the acquisition rounds, subjects began the scanned updating phase. Subjects again studied words paired with pictures;
however, presentation of the words (cues) and pictures (outcomes) was now separated by 4 s. There were three trial types during the updating phase: expected (an outcome from the acquisition
phase was repeated during the updating phase), near (an outcome from the updating phase was replaced with a new picture from the same visual category as the original outcome), and far (an
outcome from the acquisition phase was replaced with a new picture from a different visual category as the original outcome). Pattern classifiers were trained to discriminate visual categories using
data from the third acquisition round and were tested separately on cue and outcome components from the updating phase. All images in this figure are licensed under a Creative Commons license.
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fourth volumes (4 – 8 s) after outcome onset (or fifth and sixth volumes
after cue onset) were averaged together. Therefore, each updating phase
trial corresponded to a single spatial volume for the prediction compo-
nent and a single spatial volume for the outcome component.

Pattern classification analyses
Pattern classification analyses were performed using penalized (L2) lo-
gistic regression (penalty parameter � 1), implemented via the Liblinear
toolbox (Fan, Chang, Hsieh, Wang, and Lin, 2008) and custom MATLAB
(RRID:SCR 001622) code. Before pattern classification analyses were
performed, an additional round of z-scoring was performed across voxels
so that the mean activation within each spatial volume was equal to 0.
This additional z-scoring step eliminated trial-level differences in mean
univariate activity (Kuhl et al., 2013; Kuhl and Chun, 2014).

Subject-specific classifiers were first trained to discriminate face,
scene, and object trials using data from the acquisition phase. The trained
classifiers were then tested on the updating-phase trials separately for the
prediction and outcome components. Classifier performance was as-
sessed in two ways. “Classification accuracy” represented a binary coding
of whether the classifier successfully “guessed” the visual category of the
original outcome (prediction component) or the visual category of the
actual, perceived outcome (outcome component). We used classification
accuracy for general assessment of classifier performance (i.e., whether
predicted and actual outcomes could be decoded). “Classifier evidence”
was a continuous value reflecting the logit-transformed probability that
the classifier assigned to the relevant category for each trial. Classifier
evidence was used as a trial-specific measure of prediction strength,
which was related to univariate activity from the outcome component
(see below).

Relationship between decoded prediction strength and univariate
responses to outcomes
As described above, each updating-phase trial was decomposed into a
prediction component and an outcome component. To test whether
univariate responses to outcomes were modulated by prediction
strength, linear regression analyses were applied in which univariate re-
sponses to outcomes were regressed on trial-by-trial measures of predic-
tion strength (from the pattern classifiers). For each subject and each
combination of prediction/outcome regions of interest (ROIs), a total of
12 linear regression analyses were run, reflecting different combinations
of trial type (expected, near, far) and visual categories for the original/
new images (faces, objects, scenes). For the expected trials, there were
three regressions: one for each visual category. For the near trials, there
were also three regressions: one for each visual category. For the unex-
pected trials, there were six regressions to reflect each possible combina-
tion of original and new visual categories: face–scene, face– object,
scene–face, scene– object, object–face, and object–scene. We performed
separate regression analyses for each visual category condition to ensure
that any relationships between prediction strength and outcome re-
sponses could not be an artifact of differences between visual categories.
Resulting t-statistics were averaged across visual category conditions
within each trial type, yielding three mean t-statistics per subject: one for
the expected trial type, one for the near trial type, and one for the far trial
type. Mean t-statistics were then used for group-level analyses.

Regions of interest
Pattern classification analyses were performed on two networks of a pri-
ori interest: the DMN and the visual network (VisN), as identified from a
prior large-scale analysis of fMRI resting-state connectivity (Yeo et al.,
2011; Fig. 2A). Pattern classification analyses were additionally per-
formed on two subregions within the DMN, mPFC and PPC. We defined
these regions using the conjunction of the DMN mask and either medial
prefrontal regions or posterior parietal regions as defined in the Anatom-
ical Automatic Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). We
also defined three a priori anatomical ROIs (Fig. 3A): hippocampus, the
pars triangularis region of left inferior frontal gyrus (LIFGt) and caudate.
LIFGt and caudate were included as comparison regions given that these
regions have previously been implicated in signaling when expectations
are violated (Schultz et al., 1997; Kawagoe et al., 2004; Daw and Doya,
2006; Daw and Shohamy, 2008) or when mnemonic associations change
(Dolan and Fletcher, 1997; Kuhl et al., 2012). The anatomical masks
were created from the AAL atlas. The DMN mask was modified to re-
move voxels that overlapped with the hippocampal ROI (fewer than 10
voxels were removed).

Results
Decoding prediction signals
The primary goal of our study was to measure whether and how
neural predictions modulate hippocampal responses to out-
comes. To measure neural predictions, we applied pattern classi-
fication analyses to the DMN. We targeted the DMN because it
has been proposed specifically to play a role in memory-based
predictions (Bar, 2007, 2009) and because prior applications of
pattern classification analyses have revealed robust evidence of
memory reactivation within subregions of the DMN, particularly
within the PPC and mPFC (Euston et al., 2012; Zeithamova et al.,
2012; Kuhl and Chun, 2014; Schlichting and Preston, 2015; Rich-
ter et al., 2016). For comparison, we also applied pattern classifi-
cation analyses to voxels within VisN, which included areas
dedicated to both early visual processing (occipital cortex) and
higher-level perception (ventral temporal cortex). We predicted
that, compared with the VisN, the DMN would show greater
representation of predicted outcomes; in contrast, we predicted
that, relative to the DMN, the VisN would show greater represen-
tation of perceived outcomes. To first test for evidence of pr-
edictions, we trained an L2 logistic regression classifier on
acquisition-phase data and tested the classifier on updating-
phase data during the cue presentation interval. Decoding of the
predicted outcome (the original associate) was well above chance
in both the DMN (t(45) � 7.0, p � 0.001) and the VisN (t(45) �
6.5, p � 0.001; Fig. 2B), with significantly greater decoding per-
formance in the DMN than in the VisN (t(45) � 2.3, p � 0.02). To
assess decoding of the perceived outcome, we again used a clas-
sifier that was trained on acquisition-phase data, but now tested
the classifier on updating-phase data during the stimulus presen-
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tation interval (the outcome). We found reliable decoding of the
presented outcome in both the DMN (t(45) � 15.8, p � 0.001)
and the VisN (t(45) � 44.7, p � 0.001), but decoding performance
was now significantly greater in the VisN than in the DMN
(t(45) � 22.3, p � 0.001). A 2 � 2 ANOVA with region (DMN vs
VisN) and decoding target (predicted vs perceived outcome)
yielded a significant interaction (F(1,45) � 617.5, p � 0.001),
reflecting the relatively greater contribution of the DMN to re-
presenting memory-based predictions and of the VisN to repre-
senting perceived outcomes. Within the DMN, decoding of the
predicted outcome was well above chance both in mPFC and PPC
(mPFC, t(45) � 5.0, p � 0.001; PPC, t(45) � 9.5, p � 0.001).

Prediction strength modulates hippocampal responses to
unexpected event outcomes
Having established that memory-based predictions are reflected
robustly in DMN activity patterns, we next sought to relate DMN
prediction strength (memory reactivation for the original associ-
ate) to hippocampal outcome responses. To the extent that
hippocampal mismatch signals reflect a comparison between
predictions and outcomes, then hippocampal outcome responses
should increase when predictions are relatively strong but differ

from outcomes. Therefore, we expected a positive relationship
between prediction strength and hippocampal outcome re-
sponses for unexpected trials (near and far), but not for expected
trials. Notably, there was no overall difference in hippocampal
activation across expected vs unexpected trials (t(45) � 0.07,
p � 0.95), indicating that associative novelty alone (without ac-
counting for prediction strength) did not modulate hippocampal
activity. To index prediction strength, we used classifier evidence
for memory reactivation, which yielded a continuous, trial-by-
trial value where higher values index stronger predictions (Ger-
shman et al., 2013; Kuhl et al., 2013; see Materials and Methods).
Importantly, whereas predictions were decoded using brain vol-
umes acquired 3– 4 TRs after the onset of the cue (word), out-
come responses were based on brain volumes acquired 3– 4 TRs
after the onset of the outcome (picture), which was 5– 6 TRs after
cue onset. This allowed for separation of cue- and outcome-
evoked activity.

Subject-specific linear regression analyses were applied, in
which classifier evidence for the predicted outcome (prediction
strength) was the independent variable and hippocampal univar-
iate activity in response to the actual outcome was the dependent
measure. Using classifier evidence from the DMN to index pre-
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Figure 3. Relationship between prediction strength and hippocampal outcome responses. A, We assessed prediction strength (reactivation of the original associate) in the DMN, two subregions
of the DMN (mPFC and PPC, which included lateral and medial portions, but only lateral PPC is shown here) and the VisN. B, C, Both figures show results from linear regressions relating classifier
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subtypes of unexpected trials: near and far trials. D, Prediction strength measured during TRs 3– 4 was used to predict the hippocampal outcome response for each trial type (expected, unexpected
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mPFC ( p � 0.05). Error bars indicate SEM. �p � 0.10, *p � 0.05, **p � 0.01.
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dictions, there was a significant positive relationship between
prediction strength and hippocampal responses to unexpected
outcomes (t(45) � 2.6, p � 0.01; Fig. 3B, first panel), but not to
expected outcomes (t(45) � 0.35, p � 0.73). Therefore, hip-
pocampal responses to unexpected outcomes increased as a func-
tion of DMN prediction strength, consistent with the idea that
hippocampal mismatch signals depend on the active generation
of predictions. Prediction strength within VisN did not modulate
hippocampal responses to unexpected (t(45) � 0.86, p � 0.39) or
expected (t(45) � 1.9, p � 0.06) outcomes (Fig. 3B, fourth panel).
A region (DMN, VisN) � trial type (expected, unexpected)
repeated-measures ANOVA revealed a significant interaction
(F(1,45) � 4.2, p � 0.046). We also tested whether prediction
strength within the hippocampus was correlated with hippocam-
pal outcome responses, but did not find a significant relationship
for expected (t(45) � �0.32, p � 0.75) or unexpected (t(45) �
�1.3, p � 0.18) trials.

We next considered two subregions of the DMN: mPFC and
PPC. For mPFC, prediction strength was positively related to
hippocampal responses to unexpected outcomes (t(45) � 2.4, p �
0.02), but not expected outcomes (t(45) � �1.5, p � 0.15), with a
significant difference in the relationship for unexpected versus
expected trials (t(45) � 2.6, p � 0.01; Fig. 3B, second panel). For
PPC, prediction strength was positively related to hippocampal
responses to unexpected outcomes (t(45) � 2.0, p � 0.049), but
not expected outcomes (t(45) � 1.5, p � 0.13); however, there was
no significant difference in the relationship for unexpected versus
expected trials (t(45) � 0.33, p � 0.75; Fig. 3B, third panel). The
relatively greater effect of trial type for mPFC was confirmed by a
significant region (mPFC, PPC) � trial type (expected, unex-
pected) interaction (repeated-measures ANOVA, F(1,45) � 6.1,
p � 0.017).

Similarity between predictions and outcomes modulates
hippocampal responses
The preceding analyses confirm our first hypothesis: that hip-
pocampal responses to unexpected outcomes are modulated by
the strength of neural predictions. Our second question was
whether this relationship varies as a function of the similarity
between predictions and outcomes. Specifically, does the rela-
tionship between prediction strength and hippocampal outcome
response vary for near versus far unexpected trials? Using the
DMN to index predictions, we found that the difference between
the relationships (near vs far) trended toward significance
(t(45) � 1.7, p � 0.10; Fig. 3C, first panel). There was a significant,
positive relationship between prediction strength and hippocam-
pal outcome responses for near trials (t(45) � 2.7, p � 0.01), but
not far trials (t(45) � 1.3, p � 0.21). For VisN, prediction strength
was not significantly related to hippocampal outcome responses
for near (t(45) � 1.0, p � 0.32) or far trials (t(45) � 0.16, p � 0.87),
nor was there a significant difference between near versus far
trials (t(45) � 0.88, p � 0.38). However, a region (DMN, VisN) �
trial type (near, far) repeated-measures ANOVA did not reveal a
significant interaction (F(1,45) � 0.60, p � 0.44).

For mPFC, the relationship between prediction strength and
hippocampal outcome response was significantly more positive
for near than far trials (t(45) � 3.0, p � 0.005; Fig. 3C, second
panel) and was positive and highly significant for near trials
(t(45) � 3.2, p � 0.003), but not far trials (t(45) � 0.28, p � 0.78).
Qualitatively, the results for PPC were similar, but attenuated
(Fig. 3C, third panel): the relationship between PPC prediction
strength and hippocampal outcome response was not signifi-
cantly more positive for near compared with far trials (t(45) � 1.5,

p � 0.13), but there was a significant positive relationship for
near (t(45) � 2.3, p � 0.03), but not far trials (t(45) � 0.30, p �
0.77). A region (mPFC, PPC) � trial type (near, far) repeated-
measures ANOVA revealed a significant main effect of trial type
(F(1,45) � 8.1, p � 0.007), reflecting the stronger relationship for
near than far trials, with no interaction (F(1,45) � 2.3, p � 0.14).

To supplement our findings above, we also ran several control
analyses. First, we confirmed that prediction strength only mod-
ulated outcome responses after outcomes actually appeared—in
other words, that the relationship between prediction strength
and outcome response was offset temporally. To confirm this, we
re-ran the regression analyses in which prediction signals were
again time locked to the cue period (TRs 3– 4 post-cue onset), but
we now systematically varied the time point of the “outcome,”
starting with time points before the outcome appeared through
time points after the outcome appeared. Specifically, for each TR
(1– 8), we ran a separate regression analysis in which a single TR
was used to index the outcome response. Because TRs 1– 4 cor-
respond to volumes before an outcome-related fMRI response
should peak, there should not be any outcome-related effects
during these TRs. Indeed, relationships between prediction
strength and unexpected outcomes only emerged in TRs after the
onset appeared (Fig. 3D). As an additional test of the temporal
relationship between prediction and outcome responses, we also
ran a control analysis in which we measured “prediction
strength” during the putative outcome window (TRs 5 and 6
post-cue onset) and measured the hippocampal “outcome re-
sponse” during the putative prediction window (TRs 3 and 4).
With this “switching” of the windows, there was no relationship
between prediction strength and hippocampal outcome response
for any of the prediction ROIs (DMN, mPFC, PPC, or VisN) for
either expected (p � 0.4) or unexpected (p � 0.45) trials.

Finally, we ran a new analysis in which, instead of assessing the
relationship between prediction strength and outcome response
via linear regression, we divided outcome responses according to
three equally sized bins of prediction strength: high, medium,
and low. This allowed us to address the relationship between
prediction strength and outcome response via repeated-
measures ANOVA. Qualitatively and statistically, this analysis
approach yielded virtually identical results (Fig. 3E). In particu-
lar, hippocampal outcome responses varied as a function of pre-
diction strength (high, medium, low) and trial type (expected,
near, far trials) in both DMN and mPFC (DMN, F(4,180) � 2.7,
p � 0.03; mPFC, F(4,180) � 4.4, p � 0.002), but not PPC or VisN
(PPC, F(4,180) � 0.75, p � 0.56; VisN; F(4,180) � 0.97, p � 0.43).
Specifically, for DMN and mPFC, hippocampal outcome re-
sponses tended to decrease as a function of prediction strength
when outcomes were expected and to increase when outcomes
were near but unexpected.

Outcome responses in frontostriatal regions
We have shown that hippocampal mismatch signals are modu-
lated by DMN prediction strength and that this relationship is
particularly strong when considering prediction strength within
mPFC. Although we had an a priori interest in outcome re-
sponses within the hippocampus, for comparison purposes, we
also considered outcome responses in two additional regions that
have been implicated previously in memory updating: the LIFGt
and caudate. Caudate has been shown to respond to expectancy
violations (Schultz et al., 1997; Daw et al., 2006) and LIFGt has
been shown to respond when episodic memory associations
change (Dolan and Fletcher, 1997; Kuhl et al., 2012). Based on
these prior findings, we expected that both LIFGt and caudate
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would exhibit outcome responses that were related to prediction
strength. Of critical interest, however, was whether LIFGt and/or
caudate would be sensitive to the similarity between predictions
and outcomes (near vs far trials).

For both LIFGt and caudate, there tended to be a positive
relationship between mPFC prediction strength and outcome
response for unexpected trials and a negative relationship for
expected trials (Fig. 4). For both regions, this difference in rela-
tionship for expected versus unexpected trials was significant
(LIFGt: t(45) � 2.4, p � 0.02; caudate t(45) � 2.2, p � 0.03).
Therefore, as with hippocampus, LIFGt and caudate responses
were differentially modulated by mPFC prediction strength as a
function of whether outcomes were expected versus unexpected.
However, whereas the relationship between mPFC prediction
strength and hippocampal outcome response was significantly
stronger for near trials than far trials, there was no significant
difference between near versus far trials for either LIFGt or cau-
date (LIFGt, t(45) � 0.32, p � 0.75; caudate, t(45) � 1.0, p � 0.31).
In fact, for caudate, the relationship between mPFC prediction
strength and outcome response was significant for far trials (t(45)

� 2.1, p � 0.04), but not near trials (t(45) � 0.48, p � 0.64). The
relatively greater sensitivity of hippocampus to the type of unex-
pected outcome was confirmed by region � trial type (near vs
far) interactions: hippocampus versus LIFGt (F(1,45) � 6.2, p �
0.02) and hippocampus versus caudate (F(1,45) � 26.8, p �
0.0001). Therefore, although all three regions (hippocampus,
LIFGt, and caudate) were sensitive to the difference between
unexpected and expected outcomes, the hippocampus was
uniquely sensitive to differences in similarity among unex-
pected outcomes.

Post hoc, voxelwise whole-brain analyses (uncorrected thresh-
old of p � 0.001, 5 voxel extent threshold) confirmed the above
findings. A contrast of unexpected versus expected trials revealed
significant clusters in hippocampus, caudate, and IFG (right lat-
eralized). However, for the comparison of near versus far trials, a
cluster was observed in hippocampus, but not IFG or caudate.
Likewise, the comparison of near versus far trials did not reveal
clusters in the ventral striatum, midbrain, or insula, regions that

have been associated previously with pre-
diction error, mismatch, and/or expec-
tancy violation signals (Berns et al., 2001;
Lisman and Grace, 2005; D’Ardenne et al.,
2008; Preuschoff et al., 2008; Axmacher et
al., 2010).

Mismatch signals and subsequent
memory performance
As a final question, we investigated whether
mismatch signals in the hippocampus
reflect an adaptive learning mechanism.
Specifically, we tested whether greater hip-
pocampal responses to unexpected
outcomes were associated with better per-
formance on a subsequent memory test.
The subsequent memory test, which was
conducted after fMRI scanning, probed
subjects’ memories for the most recent cue–
outcome associations. For expected trials,
associations never changed and, therefore,
the “most recent” association was also the
original association. For unexpected trials,
responses on the post-test were divided into
“successful updating” trials (when subjects

selected the most recent association) and “failed updating” trials
(when subjects selected the original association; Kuhl et al., 2012).

Subjects selected the most recent associate (successful updat-
ing) on the majority of trials (collapsed across high and low
confidence, expected trials: M � 92.6%, SD � 7.9%; near trials:
M � 72.7%, SD � 19.2%; far trials: M � 69.5%, SD � 18.1%).
For near and far trials, failed updating occurred when subjects
selected the original association (near: M � 16.3%, SD � 15.5%;
far: M � 17.9%, SD � 15.8%). Subsequent memory analyses (i.e.,
comparing hippocampal activation for subsequent successful up-
dating vs failed updating) were complicated by the relatively low
rate of failed updating trials, particularly when also controlling
for visual category condition. That said, we ran two subsequent
memory analyses to test for relationships between hippocampal
outcome responses and subsequent memory accuracy. In one
version, we included all subjects in the analysis and removed
conditions, for each subject, that contained an empty cell (either
an empty successful updating or “failure to update” cell). How-
ever, there was no reliable subsequent memory for either near
trials (t(34) � �0.1, p � 0.92) or far trials (t(39) � 0.71, p � 0.48).
In a second version, we only included subjects that had at least
one trial in each cell of the design. This resulted in the inclusion of
only 16 of 46 subjects. Again, subsequent memory effects were
not observed for near trials (t(15) � �0.54, p � 0.59) or far trials
(t(15) � 0.64, p � 0.53).

Given the generally high performance and relatively low num-
ber of failed updating trials, we focused instead on potential re-
lationships between hippocampal outcome responses and RTs on
the subsequent memory test. We predicted that greater hip-
pocampal outcome responses would be associated with faster
RTs (“better” memory). Mean RTs across successful updating
trials (high and low confidence combined) were as follows: ex-
pected � 2379 ms (SD � 619 ms), near � 3716 ms (SD � 1196
ms), and far � 3679 ms (SD � 941 ms). To test for trial-level
relationships between hippocampal outcome responses and
memory performance, we ran linear regression analyses in which
the predictor variable was univariate hippocampal activity mea-
sured in response to the outcome (during the updating phase)
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Figure 4. Relationship between mPFC prediction strength and outcome responses in LIFGt and caudate. Linear regression
analyses were applied in which mPFC prediction strength was used to predict univariate outcome responses in LIFGt and caudate.
Relationships are separately shown for expected and unexpected trials (left column), and for the unexpected trial subtypes: near
and far trials (right column). LIFGt and caudate were each sensitive to the difference between expected versus unexpected trials,
but not to the difference between near versus far unexpected trials. Error bars represent SEM. �p � 0.10, *p � 0.05.
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and the dependent measure was RT dur-
ing the post-scan memory test. For each
subject, separate linear regression analy-
ses were run for each trial type (expected,
near, and far) and visual category condi-
tions, resulting in 12 separate regressions.
Resulting t-statistics were then averaged
across visual category conditions. Two
subjects who did not complete the post-
test were excluded from the analysis.

Consistent with the idea that hip-
pocampal mismatch signals reflect an
adaptive mechanism, there was a sig-
nificant negative relationship between
hippocampal outcome responses on un-
expected (near and far) trials and post-test
RTs (t(43) � 2.7, p � 0.01; Fig. 5A). There
was no significant relationship between
hippocampal outcome responses and RTs
for expected trials (t(43) � 1.5, p � 0.14),
nor was there a difference in the relation-
ship for near versus far trials (t(43) � 0.24,
p � 0.81). To complement this regression analysis, we also ran
separate linear mixed-effects models for unexpected and ex-
pected trials to assess the relationship between hippocampal out-
come response and post-test RTs. The full model included
hippocampal activity and visual category as fixed effects. An in-
tercept for subjects and by-subject random slopes for all fixed
effects were included as random effects. Again, we observed a
significant main effect of hippocampal outcome activity on post-
test RTs for unexpected trials (� 2 � 24.3, p � 0.001), but now
also observed a significant effect for expected trials (� 2 � 12.7,
p � 0.01). We also tested whether post-test RTs were related to
prediction strength (as opposed to outcome response) during the
updating phase by rerunning the regression analyses with DMN
prediction strength replacing outcome response. To be clear, for
this analysis, we were relating reactivation of the original associ-
ation to subsequent retrieval of the most recent association.
However, DMN prediction strength did not predict post-test RTs
(t � 1, p � 0.4). Likewise, there was no relationship between
prediction strength and post-test RTs when predictions were
indexed by mPFC, PPC, or VisN ( p � 0.4). Therefore, al-
though neocortical prediction strength was related to hip-
pocampal outcome responses and hippocampal outcome
responses predicted subsequent memory performance, neo-
cortical prediction strength did not, on its own, predict sub-
sequent memory performance.

To the extent that hippocampal outcome responses are related
to successful memory updating, better memory for the most re-
cent (new) association may come at the expense of retaining the
original (old) association (Kim et al., 2014). We were able to test
this idea using data from Experiment 2 as this Experiment (but
not Experiment 1) included a two-stage post-test in which stage 1
probed memory for the new association (as described above) and
stage 2 probed memory for the original association (see Materials
and Methods). Toward this end, we re-ran the linear regression
analyses using Experiment 2 data only. In one set of analyses, the
predictor variable was hippocampal outcome responses and the
dependent measure was RTs during subsequent successful re-
trieval of the new association (stage 1 performance). In a separate
set of analyses, the dependent measure was instead RTs during
subsequent successful retrieval of the original association (stage 2
performance). Importantly, we only considered trials for which

subjects successfully selected the most recent (stage 1) and the
original association (stage 2). We also separately considered rela-
tionships for near versus far trials. A 2 � 2 repeated-measures
ANOVA with factors of trial type (near, far) and memory associ-
ation (new, original) revealed a significant main effect of memory
association (F(1,20) � 6.4, p � 0.02), as well as a significant inter-
action (F(1,20) � 4.8, p � 0.04). The main effect of memory asso-
ciation reflected the fact that greater hippocampal outcome
responses were associated with relatively faster RTs during re-
trieval of new associations and relatively slower RTs during re-
trieval of original associations (Fig. 5B). In other words,
hippocampal outcome responses signaled a tradeoff between
memory for the new versus original associations. The interaction
reflected the fact that this difference was relatively stronger for
near trials compared with far trials, complementing our finding
that hippocampal mismatch signals were relatively more robust
for near than far trials. Although these analyses are based only on
subsequent retrieval speed and not retrieval accuracy, they are
consistent with the idea that hippocampal outcome responses
reflect an adaptive mechanism.

Discussion
Here, we tested whether hippocampal responses to unexpected
outcomes are sensitive to the strength of neural predictions and
to the similarity between predictions and outcomes. We quanti-
fied prediction strength by measuring cue-evoked memory reac-
tivation within the default mode network and two subregions
within the DMN: medial prefrontal cortex and posterior parietal
cortex. We report three main findings. First, prediction strength
was positively related to hippocampal responses to unexpected
outcomes, but not expected outcomes, consistent with the pro-
posed role of the hippocampus as a mismatch detector (Kumaran
and Maguire, 2006b; Duncan et al., 2012). Second, hippocampal
outcome responses were sensitive to the similarity between pre-
dictions and outcomes, particularly when considering predic-
tions derived from mPFC. More specifically, hippocampal
outcome responses increased with prediction strength to a
greater degree when predictions were similar to outcomes (near
trials) compared to when predictions were dissimilar to out-
comes (far trials). Finally, hippocampal responses to unexpected
outcomes were associated with subsequent behavioral
expressions of memory updating, with greater hippocampal out-
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Figure 5. Relationships between hippocampal outcome responses and RTs during postscan memory test. Linear regressions
were used to test for relationships between hippocampal outcome responses and RTs on a subsequent memory test (correct trials
only). A, For unexpected trials, there was a negative relationship between hippocampal outcome responses and subsequent RTs for
retrieval of new (updated) associations indicating that greater hippocampal outcome responses corresponded to faster subse-
quent retrieval of the new associations. B, Using data from Experiment 2 only, linear regression analyses tested for relationships
between hippocampal outcome responses and subsequent RTs for retrieval of the new association (left) and the original associa-
tion (right). Greater hippocampal outcome responses were associated with relatively faster RTs for subsequent retrieval of new
associations, but relatively slower RTs for retrieval of original associations (main effect of association: F(1,20) � 6.4, p � 0.02). This
difference was stronger for near than far trials, as reflected by a significant interaction between association (new, original) and trial
type (near, far; F(1,20) � 4.8, p � 0.04). Error bars represent SEM. *p � 0.05, **p � 0.01.
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come responses predicting relatively faster retrieval of new asso-
ciations and relatively slower retrieval of older associations.

Compared with prior reports of hippocampal mismatch sig-
nals (Kumaran and Maguire, 2006a, 2006b; Duncan et al., 2009,
2012; Chen et al., 2015), a critical—and novel—advantage of our
experimental approach is that we measured directly, on a trial-
by-trial basis, neural prediction strength. Although the hip-
pocampus is known to act as a novelty detector (Stern et al., 1996;
Strange et al., 1999; Ranganath and Rainer, 2003), the mismatch
signal is not thought to simply reflect associative novelty, but to
reflect a comparison between an actively generated prediction
and a new, but unexpected associative outcome (Kumaran and
Maguire, 2007). Consistent with this perspective, we found that
hippocampal outcome responses increased as a function of pre-
diction strength for unexpected trials, but not expected trials. In
other words, hippocampal outcome responses did not simply
scale with prediction strength, but were instead sensitive to
whether predictions matched outcomes. This dissociation was
observed when predictions were derived from DMN, mPFC, or
PPC, but the dissociation was most compelling for mPFC predic-
tions, in which a significant, positive relationship was observed
for unexpected trials and a numerically negative relationship was
observed for expected trials. Importantly, we did not find differ-
ences in hippocampal outcome responses to unexpected versus
expected outcomes when prediction strength was not taken into
account, confirming that hippocampal outcome responses re-
flected a combination of strong predictions and a violation of
those predictions.

We also found that hippocampal outcome responses were
sensitive to the similarity between predictions and outcomes.
Considering predictions derived from DMN, mPFC, or PPC we
found a significant relationship between prediction strength and
hippocampal outcome response for near outcomes but not far
outcomes. Again, this dissociation was particularly evident when
considering mPFC predictions, with a significantly stronger rela-
tionship for near trials compared with far trials. Therefore, hip-
pocampal mismatch signals were greatest when outcomes were
close, but not identical, to predictions. Potentially, this finding is
related to the proposed role of the hippocampus in disambiguat-
ing similar stimuli (Marr, 1971; McNaughton and Morris, 1987;
O’Reilly and McClelland, 1994; Leutgeb et al., 2007; Yassa and
Stark, 2011). Recently, we have shown that hippocampal activity
patterns become differentiated when stimuli are highly overlap-
ping (Favila et al., 2016). However, whether hippocampal
mismatch signals are directly related to disambiguation of hip-
pocampal activity patterns remains an open question and such a
relationship could take multiple forms. When similar represen-
tations are successfully disambiguated or pattern separated, this
may facilitate mismatch detection (Lee et al., 2005). Conversely,
detection of near mismatches may drive the hippocampus into a
“pattern separating” state (Duncan et al., 2012) that results in
disambiguation. In either case, there may be a direct relationship
between hippocampal mismatch detection and the disambigua-
tion of similar stimuli. One caveat, however, in relating the pres-
ent findings to prior evidence of hippocampal disambiguation of
similar events (Bakker et al., 2008; Hulbert and Norman, 2015;
Favila et al., 2016) is that our near condition only referred to
stimuli from a common visual category, whereas prior studies
have considered stimuli with much stronger perceptual overlap.
Therefore, an informative follow-up to the present work would
be to consider the relationship between prediction strength and
hippocampal outcome responses across a wider range of similar-

ities between predictions and outcomes (Lacy et al., 2011; Dun-
can et al., 2012).

As a point of comparison, we also considered outcome re-
sponses in caudate and LIFGt. As with hippocampal outcome
responses, we found that caudate and LIFGt outcome responses
tended to increase with mPFC prediction strength when out-
comes were unexpected, but to decrease with prediction strength
when outcomes were expected. The negative relationship for ex-
pected trials, which was marginally significant for both caudate
and LIFGt (Fig. 4), potentially reflects a form of repetition sup-
pression that occurs when outcomes match actively held predic-
tions (Miller et al., 1991; Wiggs and Martin, 1998; Henson and
Rugg, 2003; Grill-Spector et al., 2006; Meyer and Olson, 2011;
Klein-Flugge et al., 2013; Boorman et al., 2016). Conversely, the
tendency for activity to increase as a function of prediction
strength on unexpected trials is consistent with prior evidence
relating caudate responses to expectancy violations (Schultz et al.,
1997; Daw and Doya, 2006; Daw and Shohamy, 2008) and LIFGt
activity to changes in mnemonic associations (Dolan and
Fletcher, 1997; Kuhl et al., 2012). However, in contrast to the
hippocampus, neither caudate or LIFGt were sensitive to the sim-
ilarity between predictions and outcomes (Fig. 4), with no differ-
ences in the strength of relationships between prediction strength
and outcome responses for near versus far trials. Indeed, the hip-
pocampus was significantly more sensitive to the difference be-
tween near versus far trials than either caudate or LIFGt.
Therefore, whereas hippocampus, caudate, and LIFGt may each
play a role in updating mnemonic associations, our findings
point to a qualitative difference across these regions, with hip-
pocampus uniquely sensitive to the similarity between predic-
tions and outcome.

By considering performance on the post-scan memory test, we
were able to assess whether hippocampal outcome responses re-
flected an adaptive learning mechanism. Although we did not find
relationships between hippocampal outcome responses and subse-
quent memory accuracy, we did find relationships with subsequent
reaction times: namely, greater hippocampal outcome responses on
unexpected trials predicted faster reaction times during subsequent
retrieval of the new (updated) association. Interestingly, we observed
a significantly different relationship when we considered subsequent
retrieval of the older (original) associations, with greater hippocam-
pal outcome responses tending to predict slower retrieval of the
older associations. These findings are consistent with the idea that
hippocampal responses to unexpected outcomes reflect an adaptive
tradeoff that biases memory toward new, relevant associations and
away from older, irrelevant associations (Kim et al., 2014).

To measure memory-based predictions, we targeted the DMN
based on theoretical proposals that the DMN actively represents
memory-based predictions (Bar, 2007, 2009) and recent evidence
that activity patterns in the DMN and its subregions reflect the
contents of memory retrieval (Kuhl and Chun, 2014; Chen et al.,
2016; Richter et al., 2016). Our findings strongly reinforce both of
these points while also providing new insight into the functional
significance of predictions carried by the DMN. Although mem-
ory reactivation has most typically been studied in visual cortical
areas (e.g., Polyn et al., 2005; Kuhl et al., 2011), we observed a
double dissociation between the DMN and the visual network
with stronger reactivation (predictions) in the DMN than the
VisN and stronger decoding of outcomes (perception) in the
VisN than the DMN. Moreover, we found that predictions de-
rived from the DMN and its subregions, but not predictions from
VisN, were related to hippocampal outcome responses. These
dissociations between the DMN and the VisN add to prior evi-
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dence of functional dissociations in reactivation across visual and
frontoparietal regions (Kuhl et al., 2013). Our findings also spe-
cifically highlight mPFC as an important “prediction region” in
relation to hippocampal outcome responses. The current mPFC
findings are highly consistent with prior evidence that mPFC
represents older memories in relation to new learning (Richter et
al., 2016) and that mPFC interacts with the hippocampus during
memory updating (van Kesteren et al., 2010; Zeithamova et al.,
2012).

Finally, although our findings suggest that predictions within
the DMN may be particularly relevant to hippocampal mismatch
signals, it is important to emphasize that the predictions we de-
coded from DMN activity patterns were presumably triggered by
hippocampal pattern completion processes (O’Reilly and Mc-
Clelland, 1994; O’Reilly and Rudy, 2001; Staresina et al., 2012;
Rolls, 2013; Hindy et al., 2016). Therefore, the hippocampus may
play a critical role both in generating predictions and comparing
predictions to outcomes (Hasselmo and Wyble, 1997; Lisman
and Grace, 2005; Kumaran and Maguire, 2007; Chen et al., 2015).
That said, when we decoded prediction strength directly from the
hippocampus, it was not related to univariate hippocampal out-
come responses. This null result may simply reflect the difficulty
of decoding predictions from the hippocampus (Mack and Pres-
ton, 2016). Alternatively, it is possible that the DMN plays an
important role in transforming or processing hippocampal pre-
dictions before they are fed back to the hippocampus. Although
future work will be required to tease apart these possibilities,
which would benefit from methods with more precise temporal
resolution, the present work establishes an important relation-
ship between the predictions carried by the DMN and mismatch
signals within the hippocampus.
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Klein-Flügge MC, Barron HC, Brodersen KH, Dolan RJ, Behrens TE (2013)
Segregated encoding of reward-identity and stimulus-reward associations
in human orbitofrontal cortex. J Neurosci 33:3202–3211. CrossRef
Medline

Kok P, Jehee JF, de Lange FP (2012) Less is more: expectation sharpens
representations in the primary visual cortex. Neuron 75:265–270.
CrossRef Medline

Kroes MC, Fernández G (2012) Dynamic neural systems enable adaptive,
flexible memories. Neurosci Biobehav Rev 36:1646 –1666. CrossRef
Medline

Kuhl BA, Rissman J, Chun MM, Wagner AD (2011) Fidelity of neural reac-
tivation reveals competition between memories. Proc Natl Acad Sci U S A
108:5903–5908. CrossRef Medline

Kuhl BA, Bainbridge WA, Chun MM (2012) Neural reactivation reveals
mechanisms for updating memory. J Neurosci 32:3453–3461. CrossRef
Medline

Kuhl BA, Johnson MK, Chun MM (2013) Dissociable neural mechanisms
for goal-directed versus incidental memory reactivation. J Neurosci 33:
16099 –16109. CrossRef Medline

Kuhl BA, Chun MM (2014) Successful remembering elicits event-specific
activity patterns in lateral parietal cortex. J Neurosci 34:8051– 8060.
CrossRef Medline

Kumaran D, Maguire EA (2006a) The dynamics of hippocampal activation
during encoding of overlapping sequences. Neuron 49:617– 629.
CrossRef Medline

Kumaran D, Maguire EA (2006b) An unexpected sequence of events: mis-
match detection in the human hippocampus. PLoS Biol 4:e424. CrossRef
Medline

Kumaran D, Maguire EA (2007) Match-mismatch processes underlie hu-
man hippocampal responses to associative novelty. J Neurosci 27:8517–
8524. CrossRef Medline

Lacy JW, Yassa MA, Stark SM, Muftuler LT, Stark CE (2011) Distinct pat-
tern separation related transfer functions in human ca3/dentate and ca1
revealed using high-resolution fmri and variable mnemonic similarity.
Learn Mem 18:15–18. CrossRef Medline

Lee I, Hunsacker MR, Kesner R (2005) The role of hippocampal subregions
in detecting spatial novelty. Behav Neurosci 119:145–153. CrossRef
Medline

Lee, H., Chun, M. M., and Kuhl, B. A (2016) Lower parietal encoding acti-
vation is associated with sharper information and better memory. Cereb
Cortex. In press. CrossRef Medline

Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in
the dentate gyrus and CA3 of the hippocampus. Science 315:961–966.
CrossRef Medline

Lisman JE, Grace AA (2005) The hippocampal-vta loop: controlling the en-
try of information into long-term memory. Neuron 46:703–713.
CrossRef Medline

Mack ML, Preston AR (2016) Decisions about the past are guided by rein-
statement of specific memories in the hippocampus and perirhinal cortex.
Neuroimage 127:144 –157. CrossRef Medline

Marr D (1971) Simple memory: A theory for archicortex. Philos Trans R Soc
Lond B Biol Sci 262:23– 81. CrossRef Medline

McNaughton BL, Morris RG (1987) Hippocampal synaptic enhancement
and information storage within a distributed memory system. Trends
Neurosci 10:408 – 415. CrossRef

Meyer T, Olson CR (2011) Statistical learning of visual transitions in mon-
key inferotemporal cortex. Proc Natl Acad Sci U S A 108:19401–19406.
CrossRef Medline

Miller EK, Li L, Desimone R (1991) A neural mechanism for working and
recognition memory in inferior temporal cortex. Science 254:1377–1379.
CrossRef Medline

Norman KA, Newman E, Detre G, Polyn S (2006) How inhibitory oscilla-

tions can train neural networks and punish competitors. Neural Comput
18:1577–1610. CrossRef Medline

O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding,
storage, and recall: avoiding a trade-off. Hippocampus 4:661– 682.
CrossRef Medline

O’Reilly RC, Rudy JW (2001) Conjunctive representations in learning and
memory: principles of cortical and hippocampal function. Psychol Rev
108:311–345. CrossRef Medline

Polyn SM, Natu VS, Cohen JD, Norman KA (2005) Category-specific cor-
tical activity precedes retrieval during memory search. Science 310:1963–
1966. CrossRef Medline

Preston AR, Eichenbaum H (2013) Interplay of hippocampus and prefron-
tal cortex in memory. Curr Biol 23:R764 –R773. CrossRef Medline

Preuschoff K, Quartz SR, Bossaerts P (2008) Human insula activation re-
flects risk prediction errors as well as risk. J Neurosci 28:2745–2752.
CrossRef Medline

Rajasethupathy P, Sankaran S, Marshel JH, Kim CK, Ferenczi E, Lee SY,
Berndt A, Ramakrishnan C, Jaffe A, Lo M, Liston C, Deisseroth K (2015)
Projections from neocortex mediate top-down control of memory re-
trieval. Nature 526:653– 659. CrossRef Medline

Ranganath C, Rainer G (2003) Neural mechanisms for detecting and re-
membering novel events. Nat Rev Neurosci 4:193–202. CrossRef Medline

Richter FR, Chanales AJ, Kuhl BA (2016) Predicting the integration of over-
lapping memories by decoding mnemonic processing states during learn-
ing. Neuroimage 124:323–335. CrossRef Medline

Rolls ET (2013) The mechanisms for pattern completion and pattern sepa-
ration in the hippocampus. Front Syst Neurosci 7:10 –3389.

Schlichting ML, Preston AR (2015) Memory integration: Neural mecha-
nisms and implications for behavior. Curr Opin Behav Sci 1:1– 8.
CrossRef Medline

Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction
and reward. Science 275:1593–1599. CrossRef Medline

Staresina BP, Henson RN, Kriegeskorte N, Alink A (2012) Episodic rein-
statement in the medial temporal lobe. J Neurosci 32:18150 –18156.
CrossRef Medline
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