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Recent findings suggest that the contents of memory encoding and retrieval can be decoded from the angular gyrus (ANG), a subregion
of posterior lateral parietal cortex. However, typical decoding approaches provide little insight into the nature of ANG content represen-
tations. Here, we tested whether complex, multidimensional stimuli (faces) could be reconstructed from ANG by predicting underlying
face components from fMRI activity patterns in humans. Using an approach inspired by computer vision methods for face recognition,
we applied principal component analysis to a large set of face images to generate eigenfaces. We then modeled relationships between
eigenface values and patterns of fMRI activity. Activity patterns evoked by individual faces were then used to generate predicted eigenface
values, which could be transformed into reconstructions of individual faces. We show that visually perceived faces were reliably recon-
structed from activity patterns in occipitotemporal cortex and several lateral parietal subregions, including ANG. Subjective assessment
of reconstructed faces revealed specific sources of information (e.g., affect and skin color) that were successfully reconstructed in ANG.
Strikingly, we also found that a model trained on ANG activity patterns during face perception was able to successfully reconstruct an
independent set of face images that were held in memory. Together, these findings provide compelling evidence that ANG forms complex,
stimulus-specific representations that are reflected in activity patterns evoked during perception and remembering.
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Introduction
Human neuroimaging studies of episodic memory have consis-
tently implicated the lateral parietal cortex in memory retrieval
(Wagner et al., 2005; Cabeza et al., 2008). In particular, the angu-
lar gyrus (ANG), a ventral subregion of lateral parietal cortex,
exhibits increased activation when details of an experience are

successfully retrieved (Hutchinson et al., 2009; Spaniol et al.,
2009) and ANG activity scales with the subjective vividness of
retrieved memories (Kuhl and Chun, 2014). Because ANG in-
volvement in memory retrieval generalizes across multiple mo-
dalities and stimulus types (Shannon and Buckner, 2004; Vilberg
and Rugg, 2008), it has been argued that ANG plays a content-
general role in memory retrieval (Cabeza et al., 2008). In other
words, ANG activity may reflect whether information has been
successfully retrieved without actively representing that informa-
tion. However, this perspective has been challenged by recent
evidence that activity patterns in ANG carry information about
“what” is being remembered (Kuhl et al., 2013; Kuhl and Chun,
2014; Bird et al., 2015; St-Laurent et al., 2015). These examples of
pattern-based fMRI evidence for mnemonic content representa-
tions in ANG have relied on two main analysis methods: pattern
classification (Norman et al., 2006) and pattern similarity
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Significance Statement

Neuroimaging studies have consistently implicated lateral parietal cortex in episodic remembering, but the functional contribu-
tions of lateral parietal cortex to memory remain a topic of debate. Here, we used an innovative form of fMRI pattern analysis to
test whether lateral parietal cortex actively represents the contents of memory. Using a large set of human face images, we first
extracted latent face components (eigenfaces). We then used machine learning algorithms to predict face components from fMRI
activity patterns and, ultimately, to reconstruct images of individual faces. We show that activity patterns in a subregion of lateral
parietal cortex, the angular gyrus, supported successful reconstruction of perceived and remembered faces, confirming a role for
this region in actively representing remembered content.
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(Kriegeskorte et al., 2008). Pattern classification analyses attempt
to read out a categorical label associated with a stimulus by map-
ping labels to activity patterns, with above-chance classification
accuracy taken as evidence for content representations. Pattern
similarity analyses, on the other hand, involve correlating activity
patterns elicited by various stimuli, with higher correlations for
“matching” than “nonmatching” stimuli taken as evidence for
content-specific representations. Although these approaches
have established that different types of content are associated
with distinctive activation patterns in ANG, they provide very
limited insight into the nature of the underlying content repre-
sentations (Naselaris and Kay, 2015).

Here, we tested for mnemonic content representations in
ANG using an innovative and more transparent form of
pattern-based fMRI. Rather than testing for classification of a
single stimulus dimension (e.g., face vs scene) or a correlation
between stimulus activity patterns (match � nonmatch), we
used a complex, multidimensional stimulus class (faces) and
sought to map a wide range of continuously varying feature
values to activity patterns within ANG. Specifically, we used a
data-driven approach, originally developed for computer-
based face recognition, to extract latent components from a
large set of face images (eigenfaces) (Turk and Pentland, 1991)
and then tested whether these face components could be pre-
dicted, in a cross-validated manner, by ANG activity patterns.
Critically, these predictions could be converted, via an inverse
transformation, to native “face space” (Cowen et al., 2014),
allowing for the fMRI-based face information to be plainly
viewed in the form of a reconstructed face image. Thus, in
contrast to typical classification-/similarity-based analyses,
this approach involves a mapping between multiple stimulus
dimensions and voxel activity patterns and allows for more
direct assessment and better characterization of the sources of
information that contribute to ANG content representations.

Across two fMRI experiments, we first tested whether activity
patterns in ANG enabled successful reconstructions of perceived
(visually presented) faces. We tested the quality of perception-
based reconstructions in two ways: (1) by comparing the similar-
ity of predicted versus actual eigenface scores, which yields an
objective measure of reconstruction accuracy; and (2) by mea-
suring whether specific face dimensions (gender, affect, skin
color, etc.) were subjectively apparent in the reconstructed faces.
Next, using a model trained on perception data, we tested
whether ANG activity patterns allowed for reliable reconstruc-
tions of faces held in memory using a retro-cue working memory
paradigm (Harrison and Tong, 2009). Critically, because we used
a distinct set of faces in the perception and working memory
phases, this approach provided a stringent test of whether inter-
nally generated memory representations could be reconstructed
by predicting the underlying feature representations from ANG
activity patterns. For comparison, we also assessed perception-
and memory-based reconstructions in face-sensitive areas of oc-
cipitotemporal cortex (OTC) and other subregions of lateral
parietal cortex.

Materials and Methods
To reconstruct perceived and remembered face images from fMRI activ-
ity patterns, we ran two fMRI experiments each consisting of separate
perception and memory phases. The two experiments were highly simi-
lar, with the critical difference being that in Experiment 2 we reduced
variance in low-level visual properties of the face images. Additionally,
we ran two behavioral studies using independent samples of subjects. In
the first behavioral study, subjects evaluated reconstructed and original

face images on various dimensions so that we could characterize the
subjective accuracy of reconstructed faces. In the second behavioral
study, we used a change-detection working memory paradigm to test
whether the confusability of individual face memories could be predicted
by the similarity of eigenface scores.

Experiment 1
Participants
Twelve healthy subjects (eight female, age 19 –28 years) completed 13
experimental sessions. Two sessions from an additional subject were
excluded due to excessive sleepiness and movement during scanning.
One additional session from 1 of the 12 included subjects was excluded
due to excessive motion. All subjects were right-handed and reported
normal or corrected-to-normal vision. Informed consent was obtained
in accordance with procedures approved by the New York University
Institutional Review Board.

Stimuli
A total of 1012 face images were selected from a variety of online sources,
including publicly available face image databases (e.g., FEI Face Data-
base; http://fei.edu.br/~cet/facedatabase.html; the Color FERET Data-
base) (Phillips et al., 1998). Half of the selected faces were female. Both
female and male faces varied in terms of age, ethnicity, expression, etc.,
with no deliberate face “categories” other than gender. All faces were
forward-facing so that the eyes and mouth were visible in every image.
The images were cropped and resized to 179 � 251 pixels, and the centers
of the eyes and mouth were manually aligned across images. Of the 1012
faces, 36 were selected as test faces for the perception phase and 16 were
selected as faces for the memory phase. These test/memory faces were
pseudo-randomly selected to include a range of ethnicities and facial
expressions. The specific faces used as test faces for the perception phase
and for the memory phase were fixed (no counterbalancing) across sub-
jects. The remaining 960 faces served as a “pool” of faces from which a
different, random subset served as the perception-phase training faces
for each subject.

A small percentage of scene trials were included in the perception
phase to select face-preferring voxels. A total of 120 scene images were
collected from freely available sources (e.g., http://cvcl.mit.edu/MM/
sceneCategories.html) (Konkle et al., 2010). The scene images included
both indoor and outdoor scenes from a variety of categories, such as
mountains, playground, living room, etc. All scene images were cropped
and resized to be the same size as the face images. The total number of
face and scene images presented in the perception phase varied across
subjects, depending on the number of sessions and scanning runs that
were completed.

Experimental design and procedures
Before beginning the main experiment, subjects were given instructions
and practiced the tasks. Subjects were also familiarized with all of the
faces that would be used in the memory phase to facilitate vivid remem-
bering. Familiarization consisted of subjects viewing the faces one at a
time, for 2 s each. Subjects completed two familiarization blocks, each of
which lasted 5 min and 52 s. Thus, the familiarization phase took �12
min in total. Within each block, each face was presented 10 times with a
randomized order. The lag between presentations of the same face was
not controlled. No responses were required during the familiarization
phase, but subjects were instructed to try to remember the visual details
of each face. Inside the scanner, subjects first completed the memory
phase and then the perception phase.

Perception phase. Subjects completed seven to nine fMRI runs of the
perception phase, each of which consisted of 58 trials and lasted 7 min
and 58 s. Every trial started with a face or a scene image (size: 9° � 12°)
centrally presented over a black background screen for 2 s, followed by a
6 s fixation cross (Fig. 1A). Each scanning run contained 44 faces pre-
sented once each, 4 faces presented twice each (test faces) and 6 scene
images. Face/scene images that appeared in a given run were never re-
peated across runs. During the perception phase, subjects performed a
repetition detection task wherein they indicated on each trial whether the
image was “new” (first presentation) or “old” (second presentation).
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Responses were made on a button box and were recorded if they were
made within 7 s of the stimulus onset. Half of the training faces and half
of the test faces in each run were female. The trial order was pseudo-
randomized for each run with the constraints that test faces did not
appear consecutively and there were at least three trials between repeti-
tions of a particular test face. On average, subjects observed 413.5 faces
per session (including both training and test images; range: 336 – 432)
and 51.7 scenes (range: 42–54).

Memory phase. For the memory phase, we used a retro-cue working
memory paradigm (Harrison and Tong, 2009), as shown in Figure 1B.
Each trial started with brief, sequential presentations of two sample faces
(800 ms) at the center of the display with a 200 ms gap in between. The
image size was 9° � 12°, and the background color of the display was
black. A thin gray rectangular frame surrounded the images and re-
mained on the display throughout the trial to indicate the location/size of
the face images while they were not present; 200 ms after the presentation
of the second face, the number 1 or 2 appeared at the center of the empty
gray frame for 800 ms, indicating which of the two faces should be main-
tained in memory (1 � remember first face, 2 � remember second face).
Subjects were instructed to imagine the cued face as vividly as possible
throughout the 11.2 s delay period that followed the cue. A memory
probe was then presented (500 ms), which consisted of a face image seen
through a small circular aperture. The diameter of the aperture was
�2.5°, and the edge of the aperture was smoothed with a Gaussian filter
(� � 1°). The location of the aperture was pseudo-randomly determined
with constraints that the center of the aperture was on one of the quad-
rants of the image with equal probability within the session, and its
distance to the center of the image did not exceed �2° on both the
horizontal and vertical dimensions. The probe face was the same as the
cued face on one-half of the trials (“match” condition), and for the other
one-half of trials, it was randomly selected from the set of faces used in
the memory phase, excluding the sample faces from the current trial
(“nonmatch” condition). Subjects had 4 s, from the probe onset, to in-
dicate whether the probe matched the cued memory target or not by
making a response on a button box. A 4 s fixation period followed the
response window. In total, each memory phase trial lasted 22 s.

Subjects completed four memory phase scanning runs, each of which
consisted of 16 trials and lasted 6 min and 6 s. For each trial, one of eight
pairs of face images was used as the sample faces. The face pairs were fixed
across subjects. Each face pair was repeated eight times throughout the
session. The match/nonmatch condition, the presentation order of the
two faces, and the memory retrieval cue (1 or 2) were fully counterbal-
anced within each pair. Thus, each face image served as the memory
target four times. The order of trials was pseudo-randomized for each
session with constraints that a face pair was not used as the set of sample
faces in consecutive trials and all face pairs appeared at least once in a
scanning run.

Both phases of the experiment were run in MATLAB using the Psy-
chophysics Toolbox (Brainard, 1997). Visual stimuli were projected onto
a screen at the end of the scanner bore and viewed through a mirror
mounted in the head coil. Subjects made responses with an MRI-
compatible button box using index and middle fingers. Response but-
tons were counterbalanced across subjects. Every scanning run started
and ended with an additional 10 s and 4 s fixation period, respectively.
Upon the end of each scanning run, subjects were given feedback on their
performance (% accurate responses) on the screen and were allowed to
have a short break.

fMRI data acquisition
fMRI scanning was conducted at the Center for Brain Imaging at New
York University on the 3T Siemens Allegra head-only scanner. Func-
tional data were collected using a head coil (NM011; NOVA Medical) for
transmitting and an eight-channel phased array surface coil (NMSC071;
NOVA Medical) for receiving. We obtained 34 oblique-coronal slices
using a T2*-weighted gradient EPI sequence (TR � 2 s; TE � 30 ms; flip
angle � 82°; grid size 88 � 72; voxel size 2.5 � 2.5 � 2.5 mm). The slices
were oriented semiperpendicular to the calcarine sulcus and covered an
area approximately between the occipital pole and the postcentral sulcus.
A total of 239 volumes were collected for a perception run and 183
volumes for a memory run. We additionally collected proton density
images with the same slice prescriptions as the functional images to im-
prove functional-to-anatomical image coregistration. Whole-brain

Figure 1. Task design of Experiment 1. A, In the perception phase, subjects viewed images of faces or scenes one at a time and judged whether each image was “old” (repeated within the run)
or “new” (novel). The perception phase was similar in Experiment 2, with the main exception being that scene trials were not included. B, In the memory phase, subjects viewed two faces in a row,
followed by a number cue indicating which of the two faces to maintain during the delay period. Following the delay period, a probe (partial face image) was presented and subjects indicated
whether the probe matched the cued face or not.
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high-resolution anatomical images were collected using a T1-weighted
protocol (grid size 256 � 256; 176 slices; voxel size 1 � 1 � 1 mm). In
some cases, the high-resolution anatomical image was collected during a
separate fMRI session. The Siemens Auto Align protocol was used to
improve registration across sessions.

Experiment 2
Participants
Eleven right-handed subjects (nine female, 19 –31 years) with normal or
corrected-to-normal vision completed the experiment. Three additional
subjects were excluded due to excessive motion. Informed consent was
obtained in accordance with procedures approved by the New York Uni-
versity Institutional Review Board.

Stimuli
A total of 1184 face images were selected and prepared in the same way as
in Experiment 1. Of these, 36 faces were selected as test faces for the
perception phase and 24 were selected as faces for the memory phase.
These faces were fixed (no counterbalancing) across subjects. The re-
maining 1124 faces served as a “pool” of faces for the perception phase,
with a different, random subset of these faces serving as the perception-
phase training faces for each subject. To reduce variability of low-level
visual properties of the face images, image brightness and contrast were
manually adjusted for individual faces. The SD of the distribution con-
sisting of each image’s average pixel intensities was reduced by �10% in
Experiment 2 compared with Experiment 1, which was a statistically
significant decrease ( p � 0.0007 from a randomization test with 10,000
iterations).

An additional set of grayscale images of faces (with or without back-
ground scenes), scenes (corridors or houses), and objects (cars or gui-
tars) were used for an independent localizer scan that took place on Day
1 of the experiment. There were 144 images for each image subcategory.

Experimental design and procedures
Experiment 2 consisted of two scanning sessions held on separate days.
On Day 1, subjects practiced the memory task and were familiarized with
the to-be-remembered faces. For the familiarization phase, subjects com-
pleted self-paced rounds during which they pressed a key to proceed to
the next face. Each face image appeared once within each self-paced
familiarization block. Eight subjects completed two self-paced familiar-
ization blocks, and three subjects completed one block due to time
constraints. Additionally, during the collection of high-resolution ana-
tomical images, subjects again viewed each face, with a fixed timing of
2.5 s, for a total of 8 repetitions per face. Subjects also completed a
functional localizer scan on Day 1, which was used to select face-
preferring voxels. The second session (Day 2) was held within 3 d of the
first session, and subjects completed the main experiment (memory
phase followed by perception phase) as in Experiment 1. Before begin-
ning the main experiment on Day 2, subjects practiced the tasks and were
familiarized with the to-be-remembered faces once again (1.5 s � 8
repetitions per face). All procedures for the memory and perception
phases were identical across experiments unless otherwise described
below.

Localizer. The functional localizer scan was a block-design experiment
using three categories of images: faces, scenes, and objects. Each category
consisted of two subcategories (faces with and without backgrounds,
corridors and houses, and guitars and cars), and each subcategory was
repeated six times. Thus, there were 36 stimulus blocks. We also included
12 baseline (fixation) blocks. The order of blocks was randomized in a
way that minimized the predictability of categories. Twelve unique im-
ages were presented per block. The duration of each image was 500 ms.
All images were presented on a phase scrambled noise pattern of size 17°
� 17°. The task was an oddball detection task where subjects made a
button press with their index finger whenever only a scrambled image
appeared without an intact picture. The oddball trial randomly occurred
in half of the stimulus blocks. The localizer scan began and ended with
two additional baseline blocks (no images) and lasted 5 min and 12 s.

Perception phase. Subjects completed seven or eight perception-
phase runs, each of which consisted of 52 trials and lasted 7 min and

10 s. No scene trials were included. Faces were presented on a gray
background. As in Experiment 1, each run contained 4 test faces and
each test face was presented twice. On average, subjects observed
362.2 faces (range: 336 –384).

Memory phase. Subjects completed six memory-phase runs, each of
which lasted 6 min 38 s. We used 24 faces, and the faces were randomly
rearranged into 12 pairs for each subject. Stimuli were presented on a
gray background, and a black rectangular frame was displayed on the
screen while face images were not present. Subjects had 5 s to indicate, via
button press, whether the memory probe matched the cued face or not.
When the probe image was not the cued face (nonmatch trials), it was the
“other” face from the sample period [this contrasts with Experiment 1,
where nonmatch probes always excluded the uncued sample face]. Forc-
ing subjects to select between the cued versus uncued face was intended
to increase the difficulty of the task and subjects’ vigilance. A 5 s fixation
cross followed the probe. Each trial lasted a total of 24 s.

fMRI data acquisition
A total of 156 functional volumes were collected for a localizer scan on
Day 1. On Day 2, 215 volumes were obtained in each perception run, and
199 volumes were obtained in each memory run. For one subject, the
localizer scan was run on Day 2 due to an equipment failure on Day 1.
Whole-brain high-resolution anatomical images were collected on Day 1
or in a separate experimental session.

fMRI analysis
Preprocessing
Preprocessing of the functional data was conducted using FSL 5.0.5 (FM-
RIB Software Library, http://www.fmrib.ox.ac.uk/fsl) and custom
scripts. The first five volumes from each scanning run were discarded.
Images were corrected for head motion using MCFLIRT (Jenkinson et
al., 2002). Scanning runs where subjects moved more than one voxel (2.5
mm) were excluded from further analyses; this resulted in the exclusion
of one scanning run from one subject from Experiment 1. Motion-
corrected images were smoothed with a Gaussian kernel with 1.7 mm SD
(�4 mm FWHM). For the reconstruction of faces retrieved from mem-
ory, functional images were additionally detrended, high-pass filtered
(cutoff � 0.01 Hz), and z-scored across time within each scanning run.
High-resolution anatomical images were brain extracted using BET
(Smith, 2002). The brain-extracted images were first coregistered to the
proton density image of each session and then to the functional images
using FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002).

ROIs
We generated a total of five ROIs: four anatomically defined subregions
of posterior lateral parietal cortex (PPC) and a functionally defined set of
face-preferring areas within the OTC (see Fig. 3A). All ROIs were gener-
ated in a subject-specific manner. Anatomical ROIs were first defined
using FreeSurfer’s cortical parcellation scheme (http://surfer.nmr.mgh.
harvard.edu). The subregions of PPC consisted of the bilateral ANG,
supramarginal gyrus (SMG), intraparietal sulcus (IPS), and superior pa-
rietal lobule (SPL) as defined in FreeSurfer’s Destrieux atlas (Destrieux et
al., 2010), except that our SMG ROI was a combination of SMG and the
Jensen sulcus. The anatomical PPC ROIs were coregistered to the func-
tional images and further masked by subject-specific whole-brain masks
generated from functional images to exclude areas where signal dropout
occurred. The number of voxels included in the anatomical masks varied
across subjects and sessions (1605–2584 in ANG; 1386 –3125 in SMG;
1248 –2045 in IPS; 1726 –2886 in SPL; 12,139 –16,141 in OTC). We ad-
ditionally generated unilateral ROIs for each PPC subregion to test for
hemispheric differences in reconstruction accuracies. Across the percep-
tion and working memory phases, the only significant difference was that
working memory reconstruction accuracy was moderately higher in left
SPL than right SPL ( p � 0.04); however, this difference was likely influ-
enced by the fact that left SPL contained �200 more voxels than right
SPL. We therefore report results from the bilateral ROIs only.

To further increase the specificity of localization within ventral pari-
etal cortex, we also generated finer-grained parietal subregions. As shown
in Figure 7A, we extracted seven bilateral ventral parietal ROIs from the
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17 network cortical parcellations based on resting-state functional con-
nectivity described by Yeo et al. (2011). We included networks 7, 8, 12,
13, 15, 16, and 17. It should be noted that these network-based ROIs were
smaller than the main anatomical PPC ROIs and varied considerably in
size (mean number of voxels for each network: 568.8 in 7, 237.6 in 8,
795.5 in 12, 679.4 in 13, 309.5 in 15, 868.0 in 16, and 288.2 in 17). All ROIs
were coregistered to the functional images and masked by subject-
specific whole-brain masks.

The OTC ROI was generated by first combining anatomical ROIs
corresponding to the bilateral occipital lobe and ventral temporal cortex
(i.e., occipital pole, inferior occipital gyrus and sulcus, middle occipital
gyrus, superior occipital gyrus, cuneus, lingual gyrus, fusiform gyrus,
parahippocampal gyrus, calcarine sulcus, anterior and posterior trans-
verse collateral sulcus, middle occipital sulcus and lunatus sulcus, supe-
rior occipital sulcus and transverse occipital sulcus, anterior occipital
sulcus and preoccipital notch, lateral and medial occipitotemporal
sulcus, parieto-occipital sulcus). We then selected the 2500 most face-
preferring voxels within this anatomical OTC mask based on face-
specific activation estimated from a GLM analysis using SPM8 (http://
www.fil.ion.ucl.ac.uk/spm). In Experiment 1, face-specific activation
was estimated from the perception phase data. We generated a design
matrix with two main regressors: face trials and scene trials, each
convolved with the hemodynamic response function. The resulting
parameter estimates of the two conditions were contrasted to produce
the t statistical map, and we selected the 2500 voxels with the highest t
values. In Experiment 2, we used the independent localizer scan from
Day 1 to select voxels. We generated a hemodynamic response function-
convolved boxcar regressor for each stimulus subcategory and contrasted
the two face subcategories against the scene and object subcategories. The
resulting t map was coregistered to the functional images of the main
experiment scanned on Day 2. Again, the 2500 voxels with the highest t
values were selected. In both experiments, temporal derivatives of the
regressors were also included in the design matrix. Six motion parame-
ters and constant regressors for each scanning run were entered as regres-
sors of no interest.

Face reconstruction analysis: perception
The face reconstruction analyses were implemented as previously de-
scribed by Cowen et al. (2014) (Fig. 2). We first extracted eigenfaces by
running a principal component analysis (PCA) on the entire pool of
training faces (960 faces in Experiment 1; 1124 faces in Experiment 2).
For each face image, the pixel intensities between 0 and 255 from all three
color channels (i.e., red, green, blue) were normalized to have values
between 0 and 1, and were then vectorized to produce a single vector of
length 134,787 (175 pixels in x direction � 251 pixels in y direction � 3
color channels) representing the image. The PCA produced N � 1 total
components, or eigenfaces, where N is the number of training faces. The
eigenface scores of any face image Y (m faces � n components) can be
defined using the following formula:

Y � �F � Fmean�C

where F (m faces � k pixel values) is the face image vector, Fmean is the
matrix of the same size as F consisting of the average image of all training
faces, and C (k pixel values � n components) is the eigenface vector.

To map eigenface scores to fMRI activity patterns, we first estimated
the fMRI activation patterns evoked by each face by running a GLM
analysis using SPM8. We concatenated all perception phase scanning
runs and generated a design matrix, including each trial as a separate
regressor. All trial regressors were convolved with the hemodynamic
response function. Six motion parameters and constant regressors rep-
resenting each scanning run were entered as regressors of no interest. The
data were high-pass filtered at 0.01 Hz. One-sample t tests against a
contrast value of zero were applied to the resulting parameter estimates
to obtain a t value for each voxel. The t values were extracted from all
voxels within an ROI to produce a vector of voxel activation (activity
pattern) for each trial. We additionally regressed out effects of no inter-
est, including stimulus type (i.e., faces vs scenes) and repetition condition
(i.e., first vs second presentation) from the trial-by-trial activation
patterns.

Reconstructions were generated using an N-fold cross-validation,
where N equals the number of scanning runs. For each iteration, the
activation patterns of the four test faces from a “held-out” scanning run
were averaged over repetitions, resulting in a single activation pattern for
each of the four test faces in that run. However, to maximize power, only
the 4 test faces from a given run were held out of the training; all of the
nontest face trials in the run and all of the face trials in the other runs of
the perception phase were used as training patterns to derive the relation-
ship between eigenface scores and brain activation. The mapping be-
tween eigenface scores and brain activation is described by the following
linear model:

Ytrain � XtrainW

Figure 2. Schematic of the face reconstruction analysis. A, Model training. First, PCA was run
on a large set of training face images to extract a relatively small number of eigenfaces, so that
any face image could be efficiently expressed as a weighted sum of the eigenfaces. A regularized
linear regression was next applied to estimate a model that could predict the eigenface scores of
the training faces from the voxel responses they evoked. B, Model testing. Voxel responses
evoked by an independent test face were measured, and the eigenface scores of the test face
were predicted by applying the weights estimated from the trained regression model to the
measured responses. Finally, a reconstruction was generated by taking the linear combination
of the eigenfaces using the predicted scores. C, Assessing reconstruction accuracy. The accuracy
of a reconstruction was evaluated with 2AFC tests, which compared the Euclidean distance
between the eigenface scores of the reconstructed face and those of its original image or other
test images (“lures”). A reconstruction was counted as accurate when it was more similar (lower
Euclidean distance) to the original image than to the lure image.

Lee and Kuhl • Reconstrucing Faces from Lateral Parietal Cortex J. Neurosci., June 1, 2016 • 36(22):6069 – 6082 • 6073



where Ytrain (m faces � n components) represents the eigenface scores of
the original training faces, Xtrain (m faces � p voxels) represents the
activation patterns of all training trials within an ROI, and W ( p voxels �
n components) represents the weights linking each voxel’s BOLD signal
intensity to eigenface scores. We used ridge regression with a penaliza-
tion parameter (�) of 1 to estimate the weight matrix Ŵ with the follow-
ing formula:

Ŵ � �Xtrain
T Xtrain � �I��1 Xtrain

T Ytrain

where I is the identity matrix. Given the estimated weights, we predicted
the eigenface scores of test faces Ytest (q faces � n components) from the
BOLD activity patterns of test faces Xtest (q faces � p voxels) as follows:

Ytest � XtestŴ

Both the eigenface scores of training faces and the brain activity patterns
were de-meaned before being entered into the regression analysis. The
mean eigenface scores of the training faces were then added back to the
predicted scores. Finally, reconstructions of the test face image vectors
Frecon (q faces � k pixel values) were generated via the following formula:

Frecon � YtestC
T � Fmean

The accuracy of reconstruction for each face was determined by two-
alternative forced choice (2AFC) tests, which assessed whether a recon-
structed face was more similar to (1) the original face from which the
reconstruction was generated, or (2) another randomly selected original
image (“lure”). Similarity was measured by the Euclidian distance be-
tween predicted versus actual eigenface scores. Thus, for a given face, if
the Euclidean distance between predicted and actual eigenface scores was
lower than between predicted and lure eigenface scores, that reconstruc-
tion would be scored as “accurate” in the 2AFC test. Each reconstruction
was tested against all other test faces. Thus, N � (N � 1) comparisons
were made per ROI per session, where N is the total number of test faces.
The proportion of trials for which the reconstruction was counted as
correct represented the reconstruction accuracy of the ROI for the cor-
responding session (chance level � 50%).

Face reconstruction analysis: memory
To generate reconstructions of faces held in memory, we used the same
approach that was used for reconstructing test faces during the percep-
tion phase, with a few minor differences. First, the regression model was
trained on the entire set of perception phase data and tested on the “held
out” memory phase data. However, rather than using t statistic maps for
the activation patterns, here we used preprocessed raw fMRI data. We
used raw activity patterns instead of t statistic maps derived from a GLM
because it is difficult, with a GLM, to reliably separate activity evoked by
the sample stimuli versus activity that is selective to the delay period.
Thus, using the raw data represented a more conservative approach for
measuring “true” delay-period activity. To create a single activity pattern
for each face trial of the perception phase, volumes corresponding to
6 –10 s poststimulus onset were averaged (the delay accounted for the
hemodynamic response lag). To create a single activation pattern for
each trial of the memory phase, volumes corresponding to 4 –10 s post-
cue onset were averaged. We averaged volumes across a longer time
period for the memory phase data because we expected delay-period
maintenance of the cued face to evoke more sustained processing than
the perception phase. We regressed out the effects of conditions other
than the identity of faces in both perception (i.e., stimulus types and
repetition) and memory trials (i.e., repetition, match/nonmatch condi-
tion, and accuracy). Finally, activation patterns from the memory phase
were averaged across the four repeated trials (i.e., the four trials on which
a particular face was cued) to produce a single activation pattern per
remembered face.

As with perception-phase data, reconstruction accuracy was deter-
mined via a 2AFC test where the reconstruction (predicted eigenface
scores) was compared with the original image and a lure image. However,
for the memory-phase reconstructions, the lure image for each 2AFC test
trial was always the uncued face from the same trial (the “other face”

from the sample period). Because the reconstructed face was directly
compared with the cued versus uncued faces, above-chance reconstruc-
tion accuracy could not be explained by persistence of visual responses
evoked by the sample images; rather, successful reconstruction required
top-down memory for the cued face. Again, we used the Euclidean dis-
tance between predicted and actual eigenface scores as a measure of
similarity. The reconstruction was considered “accurate” if it was more
similar to the target than to the lure image (chance level � 50%). The
comparison was made for every face in the memory phase, and the pro-
portion of accurate reconstructions represented the accuracy of the ROI.

Statistical tests
Unless otherwise noted, tests of statistical significance, including for re-
construction accuracies, were based on randomization ( permutation)
tests with 10,000 iterations. Permutation tests were used instead of para-
metric tests to minimize assumptions about the data (namely, that data
were normally distributed or that chance accuracy is 50%). The specific
approach we used involved a rigorous bootstrapping method that allows
for group-level statistical tests (Stelzer et al., 2013). To derive chance-
level accuracies for the face reconstructions, we randomly shuffled the
face identity labels for reconstructed and original images and then com-
puted similarity measures (Euclidean distance) between images. We
computed this “null” result 100 times per session and averaged results
over sessions from a single subject so that each subject had 100 chance
accuracies. Next, we randomly selected one of the null accuracies per
subject and averaged them over subjects to produce a group-level value
representing mean chance accuracy. We repeated the group-level sam-
pling 10,000 times to generate a null distribution of mean group-level
accuracies. The p value was defined as the proportion of mean accuracies
from the null distribution that were equal to or greater than the actual
mean accuracy. In randomization tests that compared different condi-
tions, we shuffled the labels for the conditions of interest to produce the
null distribution of the difference between the conditions. In cases where
there were more than two conditions to be compared, we generated the
null distribution of F statistics by running ANOVAs based on the shuffled
labels. The proportion of values from the null distribution that were
equal to or more extreme than the actual difference or the F statistic was
reported as the p value. Because we had a priori predictions concerning
ANG (Kuhl and Chun, 2014), we do not apply corrections for multiple
comparisons when analyses included multiple ROIs. Thus, all p values
are uncorrected.

Subjective ratings of face images
To better characterize the information reflected in reconstructed face
images, we conducted a separate behavioral experiment in which inde-
pendent groups of subjects rated the original and reconstructed face
images according to the following five dimensions: brightness of the skin,
gender, emotional expression, dominance, and trustworthiness. The lat-
ter two dimensions (dominance and trustworthiness) were included
based on evidence that they are major traits that explain �80% of vari-
ance in face-based social judgments (Todorov et al., 2008). Reconstruc-
tions were generated from ANG and OTC (based on 300 eigenfaces),
using the perception-phase data from Experiments 1 and 2. Ratings
based on the original faces were then compared with the ratings based on
the reconstructions.

All subjects were recruited online via Amazon’s Mechanical Turk (Ma-
son and Suri, 2011) using the psiTurk (McDonnell et al., 2014) system. A
total of 158 subjects were provided with an informed consent form ap-
proved by the University of Oregon Institutional Review Board, and
rated the original and reconstructed face images from Experiment 1. A
total of 99 subjects were provided with an informed consent form ap-
proved by the New York University Institutional Review Board, and
rated the images from Experiment 2. For Experiment 1, 6 subjects rated
the original test faces, 77 subjects rated the reconstructions generated
from ANG, and 75 subjects rated the reconstructions generated from
OTC. For Experiment 2, 6 subjects rated the original test faces, 46 sub-
jects rated the reconstructions generated from ANG, and 47 subjects
rated the reconstructions generated from OTC. Thus, independent sam-
ples of subjects rated the reconstructed and original faces.
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The experiment was run in web browsers using JavaScript. Each sub-
ject rated the whole set of 36 original test faces or 28 –36 reconstructed
faces generated from a single session of a single fMRI subject. Recon-
structions from a given fMRI session were rated by 4 – 6 Mechanical Turk
subjects. The number of reconstructed faces depended on the number of
scanning runs an fMRI subject completed within a session. The order of
image presentation was randomized for each subject. In each trial, a face
image and five slider bars representing the five dimensions appeared on
the screen. Opposing adjectives (Dark-skinned vs Light-skinned, Femi-
nine vs Masculine, Happy vs Unhappy, Dominant vs Submissive, and
Trustworthy vs Untrustworthy) were presented on the left and right end
of each slider bar. Sliders were initially presented at the middle of the
slider bars. Subjects were asked to click on the sliders, using a 0 –10 scale,
to indicate how well each adjective described the face. Subjects received a
pop-up message when they made responses too quickly (	2 s to rate all
five dimensions) or did not make any changes on the sliders. These
messages thus encouraged subjects to thoughtfully engage in the task.
Seventeen subjects (6.6% of all subjects) received a warning that they
responded too quickly. Seven subjects (2.7% of all subjects) received a
warning that they failed to move the sliders. The average number of
warnings (regardless of the message) per subject was 0.097.

The ratings for each dimension for each original face image were av-
eraged across the six Mechanical Turk subjects. The ratings for the re-
constructions from each ROI were first averaged within each fMRI
session across Mechanical Turk subjects and then averaged across ses-
sions (for cases where an fMRI subject completed more than one session
of the main experiment). The mean ratings were finally averaged across
fMRI subjects to generate a single score per dimension per reconstructed
test face. The ratings for both the original and reconstructed images were
z-scored across faces within experiments, and the ratings from the two
experiments were then combined. The z-scored ratings of four test faces
that were used in both Experiments 1 and 2 were averaged across exper-
iments so that they were not “double-counted.” This resulted in a total of
68 test faces (32 unique to Experiment 1, 32 unique to Experiment 2, and
4 presented in both experiments) to be analyzed and a pair of scores
(original vs reconstruction) per dimension per face and for each ROI.

Change detection experiment
To validate the use of eigenface scores in assessing remembered as well as
perceived face representations, we tested whether eigenface score simi-
larity could predict confusability between faces in a behavioral working
memory task. We ran an independent experiment using a change detec-
tion paradigm (see Fig. 9A). On each trial, subjects studied a set of face
images and were then tested, after a brief delay, as to whether a single
probe face had changed or not. The probe, which appeared at one of the
studied spatial locations, was either the same as or different from the face
that had been studied at that location. To the extent that eigenface scores
capture subjective face information, we expected that subjects should be
less likely to detect face changes when the probe and studied faces were
more similar in terms of eigenface scores. In other words, lower Euclid-
ean distance between the studied and probe face was expected to result in
greater confusability.

We recruited 33 subjects on Amazon’s Mechanical Turk using the
psiTurk (McDonnell et al., 2014) system. Five additional subjects were
excluded because they did not make enough incorrect responses when
faces changed, leaving less than five analyzable trials. All subjects were
provided an informed consent form approved by the University of Ore-
gon Institutional Review Board. We used the same pool of training face
images as in Experiment 1 (excluding the faces used in the memory
phase). For each subject, a different set of 32 face images was randomly
selected from the face pool and was repeatedly used throughout the
experiment.

The experiment was run in web browsers using JavaScript. Each ex-
perimental block consisted of 24 trials. Each trial started with a fixation
cross on a gray background. After 1.5 s, six randomly selected sample
faces were presented for 2 s, followed by a 2 s delay. During the delay, the
sample faces were masked by patterns composed of scrambled face parts.
The faces and masks appeared at six fixed locations surrounding the
fixation cross. The distance from the fixation to the center of an image

was �102% of the height of the image. The average distance between the
centers of neighboring images was the same as the height of the image. At
the end of the delay, one of the six masks was replaced by a probe face. In
half of the trials, the probe face was identical to the sample face that had
appeared at that location (“match” condition). In the other half of the
trials, the probe face was randomly selected from the set of 32 faces,
excluding faces from the sample array on the current trial (“nonmatch”
condition). The probe was equally likely to appear at any of the six loca-
tions in both conditions. The subjects’ task was to remember the sample
faces throughout the delay and indicate whether the probe matched the
sample (at that location) by pressing one of two keyboard buttons (“M”
for match and “N” for nonmatch). The probe face and masks disap-
peared upon the subjects’ response, which initiated the next trial. Each
subject completed a varied number of blocks (30 subjects completed 7
blocks; 1 subject completed 4 blocks; 2 subjects completed 3 blocks). The
first block of the experiment served as a practice round and was excluded
from analysis. Subjects were given feedback on their performance and
were allowed a short break at the end of every block.

To obtain eigenface scores for each face in the experiment, PCA was
applied to all 960 images from the training face pool. An eigenface score
vector was constructed for each face, consisting of scores for the first 300
principal components. For each trial, dissimilarity between the sample
and the probe face was defined as the Euclidean distance between the two
eigenface score vectors, which was 0 in the match condition. Distance
values in nonmatch trials were z-scored within subjects.

Results
Behavioral performance
Unless otherwise stated, for this and all following analyses, group-
level results were obtained by averaging first across sessions within a
subject and then across subjects. The mean sensitivities (d
) for the
repetition detection task performed during the perception phase
were 2.32 and 2.28 (SD � 0.69 and 0.56) in Experiments 1 and 2,
respectively. The average reaction times for the correct trials were
1472 ms and 1521 ms (SD � 232 and 532 ms), respectively. The
average accuracies for the memory task in Experiments 1 and 2 were
93% and 91.9% (SD � 5.4% and 5.8%), with reaction times of the
correct trials being 1682 ms and 1643 ms (SD � 316 ms and 403 ms),
respectively. For both the perception phase and the memory phase,
there was no difference between experiments in terms of accuracy or
reaction time (p values �0.2).

Reconstruction of perceived faces
We first examined whether we could reconstruct perceived face
images from ANG, other lateral parietal regions, and/or OTC
(Fig. 3B). We used the first 300 eigenfaces, which explained
95.7% and 94.5% of the variance across images in Experiment 1
and Experiment 2, respectively. Example reconstructions from a
single subject’s data are shown in Figure 4. Reconstruction accu-
racy was obtained from 2AFC tests, in which a reconstruction was
counted as correct if its eigenface scores were more similar to
those of the original image than to those of a lure image.

Consistent with our previous study (Cowen et al., 2014), ro-
bust reconstruction accuracies were achieved from face-
preferring voxels in OTC in both Experiments 1 and 2 (66.7%
and 58.0%, respectively), and these accuracies were well above
chance (p values 	0.0005). In both experiments, we were also
able to reconstruct face images with above-chance accuracy from
ANG and from all other parietal ROIs (ANG: 56.3%, SMG:
55.9%, IPS: 58.3%, SPL: 57.6% in Experiment 1; ANG: 55.4%,
SMG: 57%, IPS: 56.9%, SPL: 57.7% in Experiment 2; p values
	0.0005; for results from finer-grained parietal subregions, see
Fig. 7B, left). No significant differences between experiments
were found in any of the parietal ROIs (p values �0.4). For the
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OTC ROI, however, accuracy in Experiment 2 was substantially
lower (p � 0.0001) than in Experiment 1 and was no longer
higher than accuracy in the parietal ROIs (p � 0.374). While
direct comparison across the two experiments requires caution
because there were several minor procedural differences, it is very

likely that the drop in reconstruction accuracy in OTC in Exper-
iment 2 was due to the reduced variability across stimuli in low-
level visual information, such as overall luminance. In contrast,
parietal regions were apparently not sensitive to these changes in
low-level visual properties. We also confirmed that, for both ex-

Figure 3. A, Anatomical and functional ROIs (orange represents ANG; blue represents SMG; yellow/green represents IPS; magenta represents SPL; turquoise represents probabilistic map of the
2500 most face-preferring voxels in OTC), visualized on the inflated surface of an averaged template brain supplied by FreeSurfer. Top, Right lateral view. Bottom, Ventral view. Turquoise color scale
represents the percentage of sessions (computed from all sessions collapsed across experiments) where a voxel is included in the OTC functional ROI mask. Regions corresponding to the fusiform face
area (FFA) and occipital face area (OFA) are included in the OTC functional ROI in most sessions. B, Mean reconstruction accuracies for each ROI in each experiment. Reconstructions were generated
from the perception phase data using 300 eigenfaces. Error bars indicate SEM across subjects. C, Mean reconstruction accuracy for perceived faces in ANG and OTC as a function of the number of
eigenfaces included in the reconstruction. Shaded areas represent SEM across subjects. ***p 	 0.001.

Figure 4. Example face images and their reconstructions from a single subject’s perception phase data. Top row, Original test faces. Middle row, Reconstructions from OTC. Bottom row,
Reconstructions from ANG. The five left-most columns (with blue bars above the reconstructions) represent examples of successful reconstructions (�50% 2AFC accuracy). The two right-most
columns (with gray bars above the reconstructions) represent examples of unsuccessful reconstructions (	50% 2AFC accuracy). Gray numbers at the upper right-hand corners of each reconstruction
indicate the mean 2AFC accuracy for each reconstructed image (for the selected subject). Reconstructions were generated using 300 eigenfaces.
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periments, reconstruction accuracies remained significant for
each ROI if accuracy was determined by comparing the raw pixel
intensities of the original versus reconstructed images instead of
the eigenface scores (p values 	0.0005).

We next compared reconstruction accuracies as a function of
the number of eigenface components that were included in the
models. Specifically, we generated reconstructions based on
1–10, 100, 200, 300, and 400 components for each of our primary
ROIs: ANG and OTC. We started with the first component,
which captured the most variance, and gradually added later
components (Fig. 3C). In both ROIs, the first two components
were sufficient to produce above-chance accuracy in both exper-
iments (p values 	0.05). Importantly, although a few early com-
ponents carried the most salient visual information (e.g., overall
brightness or the direction of lighting) and thus were sufficient to
produce above-chance accuracies, the accuracies obtained with
300 components were significantly higher than those obtained
with only 10 components in both experiments and in both ROIs
(p values 	0.005). Thus, while adding additional components
yielded diminishing returns, as would be expected, relatively late
components still contributed to reconstruction accuracy.

Finally, we tested whether reconstructions from OTC were
correlated with those from PPC. For each reconstructed face,
we correlated the predicted eigenface scores from OTC with
the predicted eigenface scores in each PPC ROI. OTC recon-
structions positively correlated with reconstructions from
each PPC subregion ( p values 	0.0005, compared with ran-
domization baseline; see Fig. 8, left). Moreover, OTC-PPC
correlations significantly differed across the PPC ROIs ( p �
0.0005), with OTC reconstructions being most similar to re-
constructions from ANG.

Subjective ratings of reconstructed facial attributes
The above-chance reconstruction accuracies in ANG and OTC
demonstrate that these regions carried enough information to
distinguish individual faces. However, these reconstruction accu-
racies based on Euclidean distance of eigenface scores do not
necessarily indicate that reconstructions were subjectively com-
pelling. Moreover, reconstruction accuracy alone does not pro-
vide information about the specific face dimensions that may
have been successfully reconstructed. To address these issues, we

had an independent set of human subjects rate the reconstructed
faces on the following face dimensions: skin color, gender, emo-
tional expression, dominance, and trustworthiness. The Pear-
son’s correlation between the ratings for the reconstructions and
the original face images served as a quantitative measure of how
well each face dimension was reconstructed. The statistical sig-
nificance of the correlations was determined with randomization
tests by randomly pairing the reconstructions and original faces
and computing r 10,000 times for each dimension in each ROI.
The proportion of r values in the resulting null distribution that
were equal to or greater than the actual correlation coefficient was
used as the p value of the test.

In all five dimensions we tested, we found positive cross-
image correlations between the average z-scored ratings for the
original test faces and their reconstructions generated from OTC
with 300 components (Fig. 5; p values 	0.05). In ANG, correla-
tions were significantly positive for emotion (happy vs unhappy)
(r � 0.26, p � 0.015) and skin color (r � 0.38, p � 0.0008), and
marginally positive for trustworthiness (r � 0.18, p � 0.069).
These results indicate that “high-level” face information was sub-
jectively evident in the reconstructions generated from ANG and
OTC.

To make it clearer that we were reconstructing more than
low-level visual information, we also regressed out the skin color
ratings (dark-skinned or light-skinned) from the other four di-
mensions (separately for the original images and reconstruc-
tions) and computed correlations with the residuals. Although
the skin color dimension was related to the race or ethnicity of the
individual, it was also tightly related to the overall luminance of
the image. Skin color ratings also had weak to moderate correla-
tions with other dimensions when we correlated ratings from the
original images (r values � 0.22, 0.13, 0.24, and 0.11 for gender,
emotion, dominance, and trustworthiness, respectively). In
OTC, the correlations between the reconstructions and original
images were still significantly positive for the remaining four di-
mensions after removing the effect of skin color (r values � 0.51,
0.67, 0.32, and 0.31 for gender, emotion, dominance, and trust-
worthiness, respectively; p values 	0.01). In ANG, the correla-
tions remained positive for emotion (r � 0.26, p � 0.016) and
marginally positive for trustworthiness (r � 0.16, p � 0.093).

Figure 5. Correlations between z-scored subjective ratings for original faces and those for reconstructions from OTC (top row) and ANG (bottom row). Reconstructions were generated with the
perception phase data using 300 eigenfaces. Each dot indicates a test face. Solid lines indicate fitted regression lines. Shaded areas represent 95% bootstrapping confidence intervals. �p 	 0.1.
*p 	 0.05. ***p 	 0.001.
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Reconstruction of faces retrieved
from memory
The preceding analyses indicate that indi-
vidual face images can be reconstructed
from ANG activity patterns when the face
images are visually present. Next, we ex-
tended our method to test whether recon-
structions could be generated for faces
retrieved from memory in the absence of
visual input. We estimated the relation-
ship between eigenface scores and fMRI
activity patterns with the perception
phase data using 300 eigenfaces. We then
applied the resulting model to the pat-
terns obtained during the delay period of
trials from the memory phase (4 –10 s
from the cue onset). The reconstruction
of a face held in memory was considered
accurate in the 2AFC test if the predicted
eigenface scores were more similar to
those of the cued face image than to the
lure image (i.e., the noncued face from the
same trial). Because we specifically com-
pared the reconstructed image to the cued
versus lure images, above-chance recon-
struction accuracy could not reflect “car-
ryover” activity from the sample images.
Rather, above-chance reconstruction ac-
curacy required top-down, selective
maintenance of the cued face.

Combining data from Experiments 1
and 2, we found above-chance recon-
struction accuracy in ANG (mean
54.3%, p � 0.0021; Fig. 6A). Consider-
ing the experiments separately, recon-
struction accuracy in ANG was
marginally above chance in Experiment
1 (mean 53.6%, p � 0.06) and signifi-
cantly above chance in Experiment 2
(mean 54.9%, p � 0.0097), with no significant difference be-
tween the experiments ( p � 0.769). Reconstructions were not
significantly above chance in OTC or other PPC ROIs ( p val-
ues �0.1). Examples of memory-based reconstructions from a
single subject’s ANG are shown in Figure 6C. We also obtained
virtually identical results if ANG reconstruction accuracy was
determined based on raw pixel intensities of the images in-
stead of the eigenface scores (accuracy across experiments: p �
0.005; Experiment 1: p � 0.027; Experiment 2: p � 0.043).

Among the finer-grained ventral PPC subregions from Yeo et
al. (2011), reconstruction accuracies were above chance in most
of the posterior networks that at least partially overlapped with
the anatomically defined ANG ROI (networks 12, 13, 15, and 17;
p values 	0.05; see Fig. 7B, right). The localization of these
memory-based reconstructions overlaps with an area of lateral
parietal cortex previously associated with vivid remembering and
stimulus-specific memory representations (Kuhl and Chun,
2014).

For qualitative assessment of the time course of memory-
based reconstructions over the delay period, we also created
reconstructions based on sliding time windows with a dura-
tion of 3 TRs (i.e., 3 brain volumes). As shown in Figure 6B,
reconstruction accuracy in ANG was numerically highest to-
ward the latter portion of the delay period. In OTC, recon-

struction accuracy was above chance early in the delay period
(second time bin: mean 52.8%, p � 0.032), but accuracy de-
creased to chance levels afterward. In addition, correlations
between predicted eigenface scores from OTC and ANG were
significantly positive over each time bin during working mem-
ory trials ( p values 	0.002; significance determined via ran-
domization test), but the correlations significantly increased
over the course of the trial (last three time bins vs first three
time bins: p � 0.029; Fig. 8, right). Although these results
potentially suggest an interaction between ANG and OTC that
increased as top-down memory representations were estab-
lished, caution is warranted given the weak overall reconstruc-
tion accuracy from OTC. Of critical relevance, these findings
provide evidence for stimulus-specific reconstructions of
memory-based representations from ANG.

Validation of using eigenface score similarity
All of the above analyses use eigenface values as a means for
mapping perceived or remembered face images to fMRI activity
patterns. However, to further confirm the validity of using eigen-
faces to study memory representations, we tested, in a separate
behavioral study, whether behavioral measures of memory-based
confusability between individual faces can be predicted by eigen-
face scores (see Fig. 9A).

Figure 6. A, Mean memory-based reconstruction accuracies for each ROI, combined across experiments. Reconstructions were
generated with patterns averaged across 3–5 TRs from the cue onset using 300 eigenfaces. Error bars indicate SEM across subjects.
B, Mean reconstruction accuracies in ANG and OTC over the course of the delay period. The first time window started with the onset
of the sample faces and the last time window stopped 2 TRs before the probe onset (to avoid “contamination” by the partial-face
probe image). Reconstructions for each time window were generated using fMRI activation patterns averaged within the window.
The average accuracy in ANG was significantly above chance at the fourth time window (mean 54.3%, p � 0.0021) and marginally
above chance at the third (mean 52.4%, p � 0.095) and the sixth time window (mean 52.6%, p � 0.065). Shaded areas represent
SEM across subjects. Dotted line indicates chance level. �p 	 0.1. *p 	 0.05. **p 	 0.01. C, Example target faces from the
memory phase (left column) and corresponding reconstructions from ANG from a representative single subject’s data (right
column). The first three rows (with blue bars on the left) represent successful (more similar to the target than to the lure image)
reconstructions, and the last row (with a gray bar on the left) represents an unsuccessful (more similar to the lure than to the target
image) example for comparison. Reconstructions were generated with patterns averaged across 3–5 TRs from the cue onset using
300 eigenfaces.
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We first removed the 1.8% of trials which had a reaction time
that deviated by more than 3 SDs from the mean of each subject.
Mean accuracy on match trials was 68.6% (SD 13.9%) and mean
accuracy on nonmatch (change) trials was 75.2% (SD 12.9%).
Accuracy did not significantly differ across the six probe locations
(p � 0.059). Of critical interest was whether the failure to detect
changes on nonmatch trials was predicted by the similarity be-
tween the studied face (sample) and probe. Figure 9B shows ex-
amples of sample and probe face pairs with high, medium, and
low eigenface similarity, selected from actual nonmatch trials.
We first ran a logistic regression analysis using all nonmatch trials
collapsed across subjects. The numbers of correct (match) and
incorrect (nonmatch) responses were controlled to be identical
within each subject by randomly selecting the same number of
trials from each condition. On average, 31 nonmatch trials were
included in the analysis per subject (range: 10 – 62 trials). Indeed,
we found that greater eigenface score similarity (i.e., lower
z-scored Euclidean distance) was associated with a higher prob-
ability of making incorrect match responses (see Fig. 9C; � �
�0.17, odds ratio � 0.84, p � 0.007). This effect remained sig-
nificant when we added the probe location as a fixed effect and
subject and a subject-by-location interaction as random effects
(likelihood ratio test against the null model; ��1�

2 � 8.996, p �
0.003). A simple comparison of the mean distances also con-
firmed that distances were lower for incorrect match responses
(mean �0.15, SD 0.31) than for correct change detection (mean
0.05, SD 0.08) without controlling for the number of trials (p �
0.0005). Thus, if two faces were more similar in terms of their
eigenface scores, subjects were more likely to confuse them as the
same face in a memory task. These results suggest that eigenface
scores can be a valid measure of subjective similarity and can
predict behavioral memory performance even though they are

derived from raw pixel intensities in a
completely data-driven way.

Discussion
The current study tested for content rep-
resentations in lateral parietal cortex dur-
ing perception and memory. We used a
data-driven method for extracting infor-
mation from face images (eigenfaces)
(Turk and Pentland, 1991) and then mod-
eled relationships between eigenface
scores and fMRI activity patterns, with the
goal of predicting a face’s eigenface scores
from the fMRI activity patterns that it
evoked. Because predicted eigenface
scores can be transformed into native face
space, this allowed us to reconstruct im-
ages of individual faces by linearly com-
bining the predicted components (Cowen
et al., 2014). Across two fMRI studies, we
show that reconstructions were success-
fully generated from activity patterns
within the angular gyrus when faces were
visually present or maintained in mem-
ory, providing compelling evidence for
stimulus-specific content representations
in this subregion of lateral parietal cortex.

Nature of ANG content representations
Our findings, along with a handful of re-
cent pattern-based fMRI studies, provide
evidence that activity patterns in ANG re-

flect the contents of mnemonic processing (Kuhl and Chun,
2014; Bird et al., 2015; St-Laurent et al., 2015). To our knowledge,
however, our study represents the first targeted effort to recon-
struct mnemonic content from ANG, and our methodological
approach affords several important insights into the nature of
ANG content representations.

First, in contrast to more typical pattern classification or pat-
tern similarity analyses, our analyses were based on relationships
between neural activity patterns and latent components underly-
ing stimuli (i.e., eigenfaces). This detail is important because it
indicates that the stimulus-specific representations we observed
in ANG cannot be attributed to subjects generating verbal labels
or other stimulus-specific “tags.” Instead, reconstructions could
only be “built” by combining predicted face “parts,” and these
parts (eigenfaces) were derived from an entirely independent set
of faces. Likewise, because we did not impose an explicit categor-
ical task structure on the stimulus set (e.g., discrimination of
happy vs sad faces), the content representations we observed in
ANG are not easily explained in terms of adaptive coding of a
behaviorally relevant dimension (Toth and Assad, 2002).

Another unique aspect of our approach is that reconstructed
content could be assessed via objective and subjective measures.
For our subjective test of reconstruction accuracy, we selected
previously validated face dimensions (Todorov et al., 2008) and
asked independent groups of subjects to rate the original and
reconstructed faces along these dimensions. We found that emo-
tional expression and skin color, and to a lesser extent, trustwor-
thiness, were successfully reflected in reconstructions generated
from ANG. These findings could either reflect low-level represen-
tations in ANG that give rise to these higher-level forms of face
information or that ANG directly codes for higher-level face in-

Figure 7. Reconstruction accuracy in ventral PPC subregions defined from independent intrinsic functional connectivity anal-
yses (Yeo et al., 2011). A, ROI visualization on the lateral surface of both hemispheres of the FreeSurfer template brain. White lines
indicate the boundaries of each subregion from Yeo et al. (2011). Black numbers indicate the names of the networks from which
each subregion is derived. Orange areas represent anatomically defined ANG based on FreeSurfer parcellation. B, Mean accuracies
for the perception-based (left) and working memory-based (right) reconstructions. All reconstructions were generated using 300
eigenface components. Memory-based reconstructions were generated from activation patterns averaged across 3–5 TRs from the
cue onset. A, B, Means and SEMs were computed from the data combined across experiments. Error bars indicate SEM across
subjects. Significance is against chance. *p 	 0.05. **p 	 0.01. ***p 	 0.001.
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formation that may be semantic, conceptual, or affective in na-
ture. Consistent with the latter possibility, evidence from other
fMRI studies indicates that ANG, along with the neighboring
superior temporal sulcus, contributes to social evaluation of faces
(Allison et al., 2000) and that ANG is a core region in semantic/
conceptual processing (Binder and Desai, 2011). It is also notable
that ANG reconstruction accuracies did not vary across Experi-
ments 1 and 2, despite substantial differences in variance of low-
level visual information (which contrasted sharply with OTC).
Thus, although the reconstructions we generated were visual in
format, it is possible that the underlying representations in ANG
were not visual at all. This possibility reflects the fact that our
method will reconstruct nonperceptual information so long as it
covaries with eigenface scores. In a similar vein, establishing a
mapping between ANG activity patterns and eigenface scores
does not indicate that ANG face representations are based on
eigenfaces. Rather, we only capitalize on the fact that eigenfaces
(1) capture a large amount of face information and (2) can be
correlated with patterns of brain activity. That said, our indepen-
dent behavioral study confirmed that memory-based confusabil-
ity between individual faces can be predicted by the similarity of
corresponding eigenface scores, validating eigenfaces as a useful
means for studying face memory.

Lateral parietal involvement in perception and memory
The role of lateral parietal cortex in memory has been a topic
of increasing interest largely because of consistent observa-
tions that univariate ANG activation increases during success-
ful, compared with unsuccessful, retrieval of event details,
so-called “retrieval success effects” (Wagner et al., 2005; Rugg
and Vilberg, 2013). In contrast, ANG tends to show little
task-evoked activation during memory encoding/perception
(Daselaar et al., 2009), suggesting that ANG contributions to
memory are restricted to retrieval. Indeed, it has been argued
that ANG tracks internally oriented thoughts/memories and

therefore does not code for externally presented information.
However, there is recent evidence that ANG activity patterns
reflect encoded content (Xue et al., 2013) and that content-
sensitive ANG activity patterns evoked during encoding are
reinstated at retrieval (Kuhl and Chun, 2014; Bird et al., 2015;
St-Laurent et al., 2015). Thus, it is notable that we observed
robust reconstructions generated from ANG activity patt-
erns during perception and that a model trained on ANG
perception-based patterns successfully transferred to ANG
memory-based patterns. Thus, our findings strongly argue
against a selective role for ANG in memory retrieval. Instead,
although it is clear that univariate activity in ANG varies ac-
cording to encoding versus retrieval processes (Vannini et al.,
2011; Huijbers et al., 2013), patterns of activity in ANG “ride
on top” of these univariate changes and reflect what is being
perceived or remembered.

Our a priori interest in ANG was motivated by prior univari-
ate (Wagner et al., 2005; Cabeza et al., 2008; Vilberg and Rugg,
2008) and pattern-based (Kuhl and Chun, 2014) fMRI studies
that have related this region to memory. Notably, in a previous
study in which we introduced the current face reconstruction
method (Cowen et al., 2014), we also found that, outside of visual
cortex, ANG was among the regions that carried the most infor-
mation about perceived faces. There are, however, several exam-
ples of mnemonic content representations in other subregions of
lateral parietal cortex. For example, successful decoding (Chris-
tophel et al., 2012; Christophel and Haynes, 2014; Bettencourt
and Xu, 2016) and reconstruction (Sprague et al., 2014; Ester et
al., 2015) of stimuli held in working memory has been observed
in more dorsal aspects of lateral parietal cortex, including the
intraparietal sulcus and superior parietal lobule. The “discrep-
ancy” in localization across these studies could reflect several
factors. For example, we used face stimuli, whereas other working
memory studies have used fractals (Christophel et al., 2012), grat-
ing orientations (Ester et al., 2015; Bettencourt and Xu, 2016), or
spatial locations (Sprague et al., 2014). Faces may recruit different
and/or more diverse sources of information (perceptual, seman-
tic, affective, social, etc.) and it has been proposed that ANG plays
a role in integrating different kinds of face information (Joassin et
al., 2011). Indeed, it has been argued, more broadly, that ANG
contributes to memory by integrating event features into
bound representations (Shimamura, 2011; Wagner et al.,
2015). Thus, it may be that ANG involvement in the present
study was at least partially related to the diversity of informa-
tion that faces combine.

It is also notable that, although the memory task we used was
nominally a “working memory” task, we deliberately encouraged
contributions from long-term memory by prefamiliarizing sub-
jects to the to-be-remembered faces. This was intended to in-
crease the fidelity of the face representations subjects held in
memory (i.e., that long-term memory might “boost” the quality
of working memory representations). However, given that ANG
has most typically been associated with long-term memory re-
trieval (Vilberg and Rugg, 2008; Hutchinson et al., 2009), it is
possible that this factor explains why we observed localization
within ANG, whereas other examples of working memory decod-
ing/reconstruction have implicated regions outside of ANG. No-
tably, the localization of working memory reconstructions to
ANG contrasted with our observation of reliable perception-
based reconstructions across multiple parietal subregions.

One of the important remaining questions concerning con-
tent representations in ANG is as follows: why does ANG repre-
sent mnemonic content? One possibility is that lateral parietal

Figure 8. Correlations between predicted eigenface scores from OTC and PPC. For each re-
constructed face, Pearson’s correlation was computed between the 300 predicted eigenface
scores from each region. The correlation coefficients were transformed to Fisher’s z, and aver-
aged across faces. Left, Correlations between OTC and each of the anatomically defined PPC
subregions during the perception phase (ANG: 0.39, SMG: 0.36, IPS: 0.34, SPL: 0.38). OTC-ANG
correlations were significantly higher than OTC-SMG or OTC-IPS correlations ( p � 0.037 and
p � 0.0017, respectively). OTC-SMG and OTC-SPL correlations were also higher than OTC-IPS
correlation ( p � 0.042 and p � 0.0008, respectively). Error bars indicate SEM across subjects.
*p 	 0.05. **p 	 0.01. Right, Correlations between ANG and OTC during the working memory
phase at each 3-TR-long time window over the course of the delay period. The first time window
started with the onset of the sample faces. Correlations were significantly stronger during the
last three time windows than the first three time windows ( p�0.029). Shaded areas represent
SEM across subjects. In both panels, means and SEM were computed from the data combined
across experiments.
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regions help align retrieved information with behavioral goals
(Kuhl et al., 2013). Whereas prefrontal cortex may hold abstract
representations of top-down goals (Miller and Cohen, 2001), and
OTC may serve as an initial site where memories are reactivated
(Danker and Anderson, 2010), lateral parietal cortex may func-
tion as an interface between prefrontal cortex and OTC, recoding
or maintaining representations in-line with behavioral goals.
From this perspective, it may be wondered why we observed such
modest memory-based reconstruction effects in OTC. Notably,
our working memory task included both target and distractor
faces. Recently, it has been shown that working memory repre-
sentations in lateral parietal cortex are significantly more robust
to distractors than are representations in OTC (Bettencourt and
Xu, 2016). Although speculative, it is possible that the inclusion
of distractor faces in the present study depressed memory-based
reconstructions in OTC to a greater extent than in ANG.

One important caveat when considering the functional con-
tributions of ANG to memory is that damage to lateral parietal
cortex does not produce profound impairments in objective
memory accuracy but rather reduces memory confidence (Ber-
ryhill, 2012). However, a more recent study that tested paired
associate learning shortly after onset of parietal damage found
robust memory deficits, and deficits were most pronounced
when damage included ANG (Ben-Zvi et al., 2015). Moreover,
repeated stimulation of ANG has also been shown to modulate
paired associate learning (Wang et al., 2014), although this may
reflect downstream effects of stimulation given the functional
and structural connectivity between angular gyrus and the hip-
pocampus (Uddin et al., 2010). Thus, while several findings point
to functional contributions of lateral parietal cortex to memory,
additional investigation will be required to better understand the
relative contributions of lateral parietal regions to subjective and
objective aspects of successful remembering.

In conclusion, we used an innovative methodological approach
that allows for perceived and remembered faces to be reconstructed
from the neural activity patterns they evoke. We used this method to
test for content representations within the angular gyrus and to gain
insight into the nature of these representations. Our findings

uniquely implicate angular gyrus in representing high-level face in-
formation across perception and memory.
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